Original article

© TEAM OF AUTHORS, 2024

Tatiana E. Veshchemova¹, Gleb V. Masaltsev¹, Valerii N. Rakitskii¹, Elena G. Chkhvirkiya¹, Sergey V. Kuzmin¹, Aristides M. Tsatsakis²

Comparative assessment of the nature of the combined action of insecticides: different methodical approaches

¹Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation;

²University of Crete, 71003, Heraklion, Greece

ABSTRACT

Introduction. Pesticide mixtures containing insecticide methomyl are commonly used in agriculture. However, the interaction of their active ingredients in a mixture has been insufficiently studied.

The purpose of the study was to evaluate the nature of the combined action of a mixture of insecticides methomyl (carbamate) and bifenthrin (pyrethroid) using various methods: a classical model (orthogonal planning of the experiment using nonlinear variables); a generalized linear regression model for the binomial distribution (probit regression); and an isobologram. The study was conducted at the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, according to the protocol approved by the local bioethical commission.

Materials and methods. Ninety male outbred rats were administered 9 combined doses of the insecticides (combinations of LD_{16} , LD_{33} and LD_{50} for the individual compounds, as devised from a preliminary study).

Results. Impaired coordination, tremor of the limbs and head, turning into convulsions, rapid (shallow) breathing were observed in all groups. The data on mortality as used to construct 2 mathematical models, as well as to construct an isobologram.

Limitations. The study was limited to studying the indicators of acute oral toxicity, without taking into account the possible repeated exposure.

Conclusion. The models showed that the additive effect for the combination of methomyl and bifenthrin was only observed for combinations when the individual dose of bifenthrin was equal to or greater than 45 mg/kg b.w. (LD_{33}) and the dose of methomyl was less than 30 mg/kg b.w., as all animals receiving a dose of 30 mg/kg b.w. of methomyl (LD_{30}) in the mixture died. Therefore, the dose of methomyl dictated the toxic effect of the mixture, which should be accounted for in hygienic regulation of methomyl-containing formulations.

Keywords: combined action; pesticide; xenobiotic; interaction; mixture effect

Compliance with ethical standards. The study was approved by the Bioethical Commission of the of the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, protocol № 01/22 dated 27.10.2022.

For citation: Veshchemova T.E., Masaltsev G.V., Rakitskii V.N., Chkhvirkiya E.G., Kuzmin S.V., Tsatsakis A.M. Comparative assessment of the nature of the combined action of insecticides: different methodological approaches. *Gigiena i Sanitariya / Hygiene and Sanitation, Russian journal.* 2024; 103(9): 1025–1030. https://doi.org/10.47470/0016-9900-2024-103-9-1025-1030 https://elibrary.ru/yvwyur

For correspondence: Gleb V. Masaltsev, e-mail masalcev.gv@fncg.ru

Contribution: Veshchemova T.E. — research concept and design, material collection and data processing, statistical processing, text writing; Masaltsev G.V. — research concept and design, material collection and data processing, statistical processing, text writing; Rakitskii V.N. — concept and design of research, scientific guidance; Chkhvirkiya E.G. — scientific guidance. Kuzmin S.V. — scientific guidance. Tsatsakis A.M. — scientific guidance. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version

Acknowledgment. The study was carried out within the framework of the industry scientific program of the Federal Service For Surveillance on Consumer Rights Protection and Human Wellbeing of the Russian Federation (Rospotrebnadzor) "Hygienic scientific justification for minimizing risks to the health of the population of Russia" (2016–2020), "Scientific justification of the national system for ensuring sanitary and epidemiological well-being, health risk management and improving the quality of life of the population of Russia" (2021–2025).

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: May 16, 2024 / Revised: June 12, 2024 / Accepted: June 19, 2024 / Published: October 16, 2024

Вещемова Т.Е.1, Масальцев Г.В.1, Ракитский В.Н.1, Чхвиркия Е.Г.1, Кузьмин С.В.1, Цацакис А.М.2

Сравнительная оценка характера комбинированного действия инсектицидов: разные методические подходы

¹ФБУН «Федеральный научный центр гигиены имени Ф.Ф. Эрисмана» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, 141014, Мытищи, Россия;

²Лаборатория токсикологии, Медицинская школа Критского университета, 71003, Ираклион, Греция

РЕЗЮМЕ

Введение. Комбинированные препараты, содержащие метомил, широко используются в сельском хозяйстве, однако взаимодействие их активных ингредиентов в смесях изучено недостаточно.

Цель исследования— оценка комбинированного действия смеси инсектицидов метомила (карбамат) и бифентрина (пиретроид) с использованием различных методов: классической модели (ортогональное планирование эксперимента с нелинейными переменными), обобщённой линейной регрессионной модели для биномиального распределения (пробит-регрессия) и изоболограммы. Исследование проведено во ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора в соответствии с протоколом, утверждённым комиссией по биоэтике.

Материалы и методы. Беспородным крысам-самцам (n = 90) вводили девять комбинированных доз инсектицидов (комбинации LD_{16} , LD_{33} и LD_{50} для отдельных соединений, разработанные на основе предварительного исследования).

Оригинальная статья

Результаты. Во всех группах у опытных животных после введения наблюдались нарушение координации, тремор конечностей и головы, переходящий в судороги, учащённое (поверхностное) дыхание. Данные о смертности в каждой из групп использовали для построения двух математических моделей и изоболограммы.

Ограничения исследования: изучение показателей острой пероральной токсичности без учёта возможной повторной экспозиции.

Заключение. Использованные модели показали, что аддитивный эффект комбинации метомила и бифентрина характерен только для сочетаний, в которых индивидуальная доза бифентрина была равна или превышала 45 мг/кг массы тела (LD33), а доза метомила составляла менее 30 мг/кг массы тела, поскольку все животные, получавшие метомил (LD50) в смеси в дозе 30 мг/кг массы тела, погибали. Экспериментально установлено, что доза метомила определяет токсический эффект смеси, который следует учитывать при гигиеническом регламентировании препаратов, содержащих это вещество.

Ключевые слова: комбинированное действие; пестицид; ксенобиотик; взаимодействие; эффект смеси

Соблюдение этических стандартов. Исследование было одобрено Биоэтической комиссией ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, протокол № 01/22 от 27.10.2022 г.

Для цитирования: Вещемова Т.Е., Масальцев Г.В., Ракитский В.Н., Чхвиркия Е.Г., Кузьмин С.В., Цацакис А.М. Сравнительная оценка характера комбинированного действия инсектицидов: разные методические подходы. Гигиена и санитария. 2024; 103(9): 1025—1030. https://doi.org/10.47470/0016-9900-2024-103-9-1025-1030 https://elibrary.ru/vvwvur

Для корреспонденции: Масальцев Глеб Викторович, e-mail: masalcev.gv@fncg.ru

Участие авторов: Вещемова Т.Е. — концепция и дизайн исследования, сбор материала и обработка данных, статистическая обработка, написание текста; Масальцев Г.В. — концепция и дизайн исследования, сбор материала и обработка данных, статистическая обработка, написание текста; Ракитский В.Н. — концепция и дизайн исследования, научное руководство; Чхвиркия Е.Г. — научное руководство; Кузьмин С.В. — научное руководство; Цацакис А.М. — научное руководство. Все соавторы — утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.

Финансирование. Исследование выполнено в рамках отраслевых программ Роспотребнадзора «Гигиеническое научное обоснование минимизации рисков здоровью населения России» (2016—2020 гг.), «Научное обоснование национальной системы обеспечения санитарно-эпидемиологического благополучия, управления рисками здоровью и повышения качества жизни населения России» (2021—2025 гг.).

Поступила: 16.05.2024 / Поступила после доработки: 12.06.2024 / Принята к печати: 19.06.2024 / Опубликована: 16.10.2024

Introduction

The study of the effects of combined action (mixed effects) of xenobiotics on human health is one of the priority areas of research in the field of sanitary and hygienic (preventive) toxicology due to the need for correct assessment of the risks to public health under real exposure conditions [1–3]. One of the prominent classes of xenobiotics that has received special attention from risk-assessment experts is pesticides due to the possible negative synergistic effect of their use. The widespread use of pesticide mixtures is unavoidable due to the emergence of resistance to entire chemical classes of active substances, which is especially common for insects in relation to insecticides [4, 5].

According to the published data, the nature of the combined action of chemical mixtures may depend on the chemical family of its components, their dose in the mixture, and the target organs that its components can affect. Often, the same mixture can show multidirectional effects in relation to different studied indicators. It is known that, depending on the above factors, individual components of a mixture may exhibit either an "additive" effect or interact in such a way that their combined effects may differ from the forecasts for simple additivity. The individual components of pesticide mixtures can exhibit either "more than additive (potentiation, synergy)" or "less than the additive (inhibition, antagonism)" effect [6, 7].

The ability of mixtures of certain insecticides, particularly those that inhibit cholinesterase (organophosphorus compounds and N-methylcarbamates), pyrethroid insecticides, and triazinone fungicides, to show synergy was previously published in the scientific literature [4, 8]. At the same time, the effect of the combined action of pesticides on the body of warm-blooded animals can vary dramatically depending on the dose of each component in the mixture and on the studied indicator: at low doses, pesticides can even act as agonists for each other [8, 9].

One of the most widely used insecticidal mixtures is a combination of methomyl (CAS No. 16752-77-5 — carbamate; WHO hazard Class1b-particularly dangerous) and Bifenthrin (CAS No. 82657-04-3-pyrethroid; WHO Hazard Class II-moderate), which is applied to many plant products in agriculture in emerging economies [10, 11]. The study of the nature of the combined action of this mixture was appropriate to establish the potential danger to public health in the event of import of such products.

One of the more widely used models for studying the nature of the combined effect of chemicals in acute exposure scenarios upon ingestion *in vivo* in the late-Soviet and post-Soviet era was

developed in the 1980s (hereinafter referred to as the classical model). The classical model allowed to access the combined effect of 2 chemicals in an acute experiment by employing the principles of linear regression analysis. The novelty of the approach of the classical model was in dose selection: to take into account the nonlinearity of the dose-effect relationship [12, 13], the doses of the two chemicals to be administered to animals were chosen based on probabilistic values of LD_{16} , LD_{33} , and LD_{50} for each chemical.

Another convention among scientists studying the toxic effects of chemical mixtures, is that the nature of combined action can be well described by isobolograms or, if we generalize this approach to consider different dose levels, by the surface response [6, 7].

Purpose of the study. Comparative evaluation of the nature of the combined action of a mixture of insecticides methomyl and bifenthrin using various methods: using a classical model (orthogonal planning of the experiment using nonlinear variables); a generalized linear regression model for the binomial distribution (probit regression); and an isobologram.

Materials and methods

The study was conducted in the Testing Biological Laboratory of the FBIS "F.F. Erisman FSCH" of the Rospotrebnadzor according to the protocol approved by the local bioethical commission. Studies were conducted on outbred male rats. During the in vivo experiment, the average lethal dose of technical products and their mixtures was determined when intragastrically administered in mg/kg b.w. (LD50 orally). The first stage of the study included determining the average lethal dose in isolation for methomyl (CAS No. 16752-77-5) and bifenthrin (CAS No. 82657-04-3) when administered intragastrically in mg/kg b.w. The doses were selected based on the probabilistic values of LD₁₆, LD₃₃ and LD₅₀ of individual compounds, in accordance with the principle formulated by V.N. Rakitskii [12]. In a preliminary experiment to determine the average lethal doses for methomyl and bifenthrin, 48 male rats were used. When methomyl was administered, doses of 5, 30, 50, 60 mg/kg b.w. were tested, and when bifenthrin was administered – 30, 60, 70, 90 mg/kg b.w. (solvent – vegetable oil).

In the main experiment with a mixture of methomylbifenthrin, 90 outbred white male rats weighing from 215 to 230 g were used (10 animals in each group). The rats were quarantined, randomly assigned to groups, and weighed before administration. Observation of the clinical symptoms (condition and behavior of animals, reversibility of symptoms) was carried out after 30 minutes, 2 hours, 4 hours, 24 hours, after the administration, then once Original article

Table 1 / Таблица 1

Average lethal doses (mg/kg b.w.) of methomyl and bifenthrin

Средние смертельные дозы (мг/кг массы тела) метомила и бифентрина

Dose	Methomyl	Bifenthrin
Доза	Метомил	Бифентрин
LD_{50}	30.00	60.00
LD_{33}	23.78	30.97
LD_{17}	18.17	31.81
LD_{16}	17.79	44.72

daily for the remainder of the two weeks of the experiment. The levels of factors were chosen (LD₁₆, LD₃₃, LD₅₀) with the interval of their variation (LD₁₇). The calculation of the effect value was carried out using the formulas presented in the Methodological Recommendations "Setting up experimental studies to study the nature of the combined action of chemicals in order to develop preventive measures" [13]. The value of y as a function of (x_1, x_2) was calculated by the formula (1):

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_{11} x_1^2 + b_{22} x_2^2 + b_{12} x_1 x_2,$$
 (1)

where y – mortality (%); x_1 – methomyl; x_2 – bifenthrin; b_0 – general direction of action with the average value of factors; b₁, b₁₁ - coefficients reflecting linear and nonlinear effects of methomyl (b_2 , b_{22} – bifenthrin); b_{12} – effect of combined action of methomyl and bifenthrin. The values of the coefficients b_i were calculated according to the formula (2):

$$\mathbf{b}_{i} = (\mathbf{y}_{i} \cdot \mathbf{a}_{i}) / \mathbf{c}_{i} \tag{2}$$

Additionally, the obtained data on mortality were used to construct a generalized linear regression model for the binomial distribution of the dependent variable "mortality" [14, 15]. The isobologram for observed mortality was constructed using SigmaPlot v. 12.5 (Systat Soft Wire Corporationware, USA). Statistical processing was performed in the SPSS Statistics v. 22.0 program (IBM Corporation, New York, USA) at $\alpha = 0.05$.

Results

The average lethal doses for methomyl and bifenthrin obtained in a preliminary experiment with isolated administration are presented in Table 1.

When the dose combinations (indicated in the materials and methods) were administered, the following clinical symptoms were observed in all groups: impaired coordination, tremor of the limbs and head, turning into convulsions; rapid, shallow breathing. Tremor persisted for 2-3 days after administration of the mixture and, presumably, was a manifestation of the toxic effect of bifenthrin. Death occurred within the first day after administration, mainly in the first hours. To create a mathematical model of the effect of the combination of methomyl and bifenthrin on mortality of white male rats (%) as observed in an acute oral experiment, the following doses were used (Table 2).

In Tables 3–4, we present the properties of the constructed mathematical model using the method of orthogonal planning of the experiment using nonlinear quantities (classical model) [13], which has the form (3):

$$y = 44.44 + 33.5x_1 - 5x_2 + 3.33x_1^2 + 28x_2^2 - 2.5x_1x_2,$$
 (3)

where y is the function (x_1, x_2) ; x_1 — methomyl, and x_2 — bifenthrin. It was concluded that the action of methomyl and bifenthrin exhibited interdependency ($b_{12} \neq 0$). Isolated administration of methomyl with an increase in the dose from LD₃₃ to LD₅₀ caused an increase in animal death by 30.17%, as evidenced by the difference in coefficients b₁-b₁₁. When combined with an increase in the dose from LD₃₃ to LD₅₀, the methomyl-bifenthrin mixture caused an increase in animal death by 57.33% $(b_1 - b_2 + b_{11} + b_{12} - b_{22})$, the effect of interaction between the components of the mixture was more pronounced than the isolated effect of bifenthrin, but less than when combined with bifenthrin, as evidenced by the coefficients: $b_{12} < b_1$, $b_{12} > b_2$. The degree of action of methomyl in the studied doses was stronger than that of bifenthrin $(b_1 + b_{11} > b_2 + b_{12})$. At the same time, the leading component of the mixture was methomyl, as evidenced by the fact that the value of the coefficient b_1 exceeded the value of the coefficient b_2 ($b_1 > b_2$). Thus, the classical model indicated that the combined effects of methomyl and bifenthrin in the mixture were interdependent, but less than additive.

Then, data on animal mortality in the experiment (Table 2) were used to construct probit regressionoй model in the IBM SPSS Statistics v. 22.0 program, where the dependent variable was mortality (%), and the two independent variables were the dose levels of methomyl and bifenthrin in the mixture. The model properties are shown in Table 5: a quasi-complete separation was observed, which was caused by the fact that all animals receiving a dose of 30 mg/kg b.w. of methomyl in the mixture died, regardless of the concurrent dose of bifenthrin. After excluding doses of the mixture containing methomyl at the level of 30 mg/kg b.w. from the model, the model was reconstructed (Table 6). After studying the statistical significance of the parameters, it was concluded that when the dose of methomyl in the mixture was equal to 30 mg/kg b.w., the content of bifenthrin had no significant effect on the mortality of the mixture as all animals died. When the dose of methomyl in the mixture exceeded 30 mg/kg b.w., bifenthrin significantly affected mortality only if its amount was \geq 45 mg/kg b.w.

Table 2 / Таблица 2

The nature of the combined action of methomyl and bifenthrin Характеристика совместного действия метомила и бифентрина

Experiment No.	Probabilistic values in combination (methomyl + bifenthrin)		ng/kg b.w. г массы тела	Animal deaths (mortality / total number of animals (n))	Mortality (%) Гибель (%)	
Опыт №	Вероятностные значения в комбинации (метомил + бифентрин)	Methomyl метомила	Bifenthrin бифентрина	Гибель животных (смертность / общее число животных (n))		
1	$LD_{16} + LD_{16}$	18	31	4/10	40	
2	$LD_{16} + LD_{33}$	18	45	10/10	10	
3	$LD_{16} + LD_{50}$	18	60	5/10	50	
4	$LD_{33} + LD_{16}$	24	31	10/10	100	
5	$LD_{33} + LD_{33}$	24	45	3/10	30	
6	$LD_{33} + LD_{50}$	24	60	6/10	60	
7	$LD_{50} + LD_{16}$	30	31	10/10	100	
8	$LD_{50} + LD_{33}$	30	45	10/10	100	
9	$LD_{50} + LD_{50}$	30	60	10/10	100	

Оригинальная статья

Table 3 / Таблица 3

Experimental plan for the study of acute combined exposure to two factors (x_1, x_2)

Экспериментальный план по изучению острого комбинированного воздействия двух факторов (x_1, x_2)

Experiment No. Опыт №	<i>x</i> ₁	<i>x</i> ₂	Actual mortality (%) Фактическая смертность (%)	Estimated mortality (%) Предполагаемая смертность (%) Урј	Error Ошибка $\mathbf{j} = \mathbf{y_j} - \mathbf{y_{pj}}$
1	-1	-1	40	45.28	-5.28
2	1	-1	100	116.94	-16.94
3	-1	1	50	40.28	9.72
4	1	1	100	101.94	-1.94
5	0	0	30	44.44	-14.44
6	0	1	60	67.78	-7.78
7	0	-1	100 77.78		22.22
8	1	0	100	81.11	18.89
9	-1	0	10	14.44	-4.44

Таble 4 / Таблица 4 Vectors for calculating the coefficients $\mathbf{b_j} = (y_j \cdot \mathbf{a_j}) / \mathbf{c_j}$ for $y = f(x_1, x_2)$ Векторы для расчёта коэффициентов $\mathbf{b_j} = (y_j \cdot \mathbf{a_j}) / \mathbf{c_j}$ для $y = f(x_1, x_2)$

C _j	9	6	6	6	6	4		
	\mathbf{a}_0	\mathbf{a}_1	\mathbf{a}_2	a ₁₁	a ₂₂	a ₁₂		
Experiment No. Опыт №								
1	-1	-1	-1	1	1	1		
2	-1	1	-1	1	1	-1		
3	-1	-1	1	1	1	-1		
4	-1	1	1	1	1	1		
5	5	0	0	-2	-2	0		
6	2	0	1	-2	1	0		
7	2	0	-1	-2	1	0		
8	2	1	0	1	-2	0		
9	2	-1	0	1	-2	0		

Table 5 / Таблица 5

Parameters of the GLM model in IBM SPSS Statistics v. 24 with quasi-complete separation in relation to the absolute mortality of methomyl at the dose of 30 milligrams per kilogram of animal body weight

Параметры модели GLM в IBM SPSS Statistics v. 24 с квазиполным разделением в отношении абсолютной смертности от метомила в дозе 30 миллиграммов на килограмм массы тела животного

Parameter estimation Parameter Оценка параметра Параметр	В	Standard Error Стандартная	95% Wald C Inter 95%-й довеј интервал	val рительный	1	ypothesis to	J	Exponent (В) Экспонента	Confidence for Expo 959 доверит интерва	Wald ce Interval onent (В) %-й гельный л Вальда оненты (В)
		ошибка	lower limit нижний предел	upper limit верхний предел	chi-squared Wald χ² Вальда	degrees of freedom степени свободы	statistical significance статистическая значимость р	(В)	lower limit нижний предел	upper limit верхний предел
(Intersection) / (Пересечение)	-7.411	4707.8581	-9234.644	9219.821	0.000	1	0.999	0.001	0.000	·a
[Methomyl = 18 mg/kg b.w.] [Метомил = 18 мг/кг м.т.]	7.750	4707.8581	-9219.483	9234.982	0.000	1	0.999	2320.993	0.000	·a
[Methomyl = 24 mg/kg of b.w.] [Метомил = 24 мг/кг м.т.]	6.804	4707.8581	-9220.428	9234.036	0.000	1	0.999	901.532	0.000	·a
[Methomyl = 30 mg/kg b.w.] [Метомил = 30 мг/кг м.т.]	$0_{\rm p}$							1		•
[Bifenthrin = 31 mg/kg b.w.] [Бифентрин = 31 мг/кг м.т.]	-0.486	0.4313	-1.332	0.359	1.272	1	0.259	0.615	0.264	1.432
[Bifenthrin = 45 mg/kg b.w.] [Бифентрин = 45 мг/кг м.т.]	1.064	0.4441	0.193	1.934	5.737	1	0.017	2.897	1.213	6.917
[Bifenthrin = 60 mg/kg b.w.] [Бифентрин = 60 мг/кг м.т.]	$0_{\rm p}$							1		
(Scale) / (Шкала)	1°	_	_	_	_	-	_	_	_	

Note: Here and in Table 6: Dependent variable: Mortality Model: (Intersection), Methomyl, Bifenthrin. a. Set to "System unavailable due to overflow". b. Set to zero because this parameter is redundant. c. Fixed to the displayed value.

П р и м е ч а н и е. Здесь и в табл. 6: Зависимая переменная: Модель смертности: (пересечение), Метомил, бифентрин. а — Установлено значение «Система недоступна из-за переполнения». b — Установлено нулевое значение, поскольку этот параметр является избыточным. с — Зафиксировано на отображаемом значении.

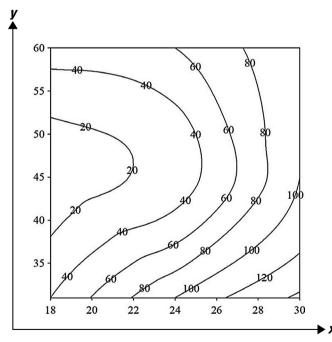

Original article

Table 6 / Таблица 6

Parameters of the GLM model in IBM SPSS Statistics v. 24, constructed by excluding the dose of methomyl of 30 milligrams per kilogram of animal body weight due to quasi-complete separation caused by absolute mortality

Параметры модели GLM в IBM SPSS Statistics v. 24, построенные путем исключения дозы метомила 30 миллиграмм на килограмм массы тела животного в связи с квазиполным разделением, вызванным абсолютной смертностью

Parameter estimation Parameter	Standard Error		95% Wald Confidence Interval 95%-й доверительный интервал Вальда		Hypothesis testing Проверка гипотезы			Exponent (B)	95% Wald Confidence Interval for Exponent (В) 95%-й доверительный интервал Вальда для Экспоненты (В)	
Оценка параметра Параметр	В	Стандартная ошибка	lower limit нижний предел	upper limit верхний предел	chi-squared Wald χ² Вальда	degrees of freedom степени свободы	statistical significance статистическая значимость	Экспонента (В)	lower limit нижний предел	upper limit верхний предел
(Intersection) / (Пересечение)	-0.607	0.3441	-1.282	0.067	3.113	1	0.078	0.545	0.278	1.070
[Methomyl = 18 mg/kg b.w.] [Метомил = 18 мг/кг м.т.]	0.946	0.3696	0.221	1.670	6.545	1	0.011	2.574	1.248	5.313
[Methomyl = 24 mg/kg of b.w.] [Метомил = 24 мг/кг м.т.]	0^{a}							1	•	•
[Bifenthrin = 31 mg/kg b.w.] [Бифентрин = 31 мг/кг м.т.]	-0.486	0.4313	-1.332	0.359	1.272	1	0.259	0.615	0.264	1.432
[Bifenthrin = 45 mg/kg b.w.] [Бифентрин = 45 мг/кг м.т.]	1.064	0.4441	0.193	1.934	5.737	1	0.017	2.897	1.213	6.917
[Bifenthrin = 60 mg/kg b.w.] [Бифентрин = 60 мг/кг м.т.]	0^{a}							1		
(Scale) / (Шкала)	1 ^b	_	_		_	_	_	_	_	_

The isobologram of the combined action of methomyl and bifenthrin. Vertical axis (y): dose of bifenthrin in the mixture in milligrams per kilogram of animal body weight. Horizontal axis (x): dose of methomyl in the mixture in milligrams per kilogram of animal body weight. The lines show the change in mortality rate as a percentage.

Изоболограмма комбинированного действия метомила и бифентрина. Вертикальная ось (у): доза бифентрина в смеси в миллиграммах на килограмм массы тела животного. Горизонтальная ось (х): доза метомила в смеси в миллиграммах на килограмм массы тела животного. Линии показывают изменение показателя смертности в процентах.

The construction of an isobologram (Figure) confirmed that methomyl was the most significant component in the mixture [16]. At doses of methomyl \geqslant 24 mg/kg b.w., the predicted mortality of the mixture was \geqslant 100% regardless of the dose of bifenthrin.

Discussion

Plant protection products based on methomyl have been used worldwide since 1978 [17]. In 2018, more than 100 thousand kilograms of methomyl-based formulations were used in California, USA alone [18]. Methomyl is often used in combination with bifenthrin in the form of mixed formulations due to the need to counteract acquired resistance to carbamates in target organisms (insects) [10, 11]. Both active substances affect the nervous system: the principle of action of methomyl is to inhibit the enzyme acetylcholinesterase, while bifenthrin disrupts the normal functioning of the sodium channels of neurons, interfering with their closure [19]. In mammals, poisoning with these active substances causes hyperstimulation of the nervous system, which is manifested by similar clinical symptoms, such as convulsions, gait disorders, etc. [20-22]. However, the data obtained in the present study demonstrates that, despite the similarity of the mechanisms of toxic action of these substances, the content of methomyl in the mixture, due to its higher toxicity when administered orally, is the main predictor of mortality. Additive effect was shown only at those doses of the mixture when the individual dose of methomyl was less than 30 milligrams per kilogram of animal body weight, which corresponds to the expected LD₅₀ for methomyl. Thus, when using methomyl- containing combinations, it is necessary to pay special attention to the hygienic regulation of their use and the use of personal protective equipment due to the high toxicity of methomyl.

Conclusion

In the present study the dose of methomyl dictated the toxic effect of the mixture (with bifenthrin). This "dominance" of methomyl should be accounted for in hygienic regulation of methomyl-containing formulations. Furthermore, the present study demonstrates the importance of assessing mixture-based pesticide interactions for human risk assessment.

Оригинальная статья

References

- 1. Organization for Economic Co-operation and Development (OECD). Considerations for assessing the risks of combined exposure to multiple chemicals. OECD Publishing; 2018. https://doi.org/10.1787/ceca15a9-en
- Tsatsakis A.M., ed. Toxicological Risk Assessment and Multi-System Health Impacts from Exposure. Elsevier; 2021. https://doi.org/10.1016/C2020-0-02454-0
- WHO. Health effects of combined exposures in the work environment. Technical report series; 1981.
- Hernández A.F., Gil F., Lacasaña M. Toxicological interactions of pesticide mixtures: an update. Arch. Toxicol. 2017; 91(10): 3211-23. https://doi.org/10.1007/s00204-017-2043-5
- Trdan S., ed. *Insecticides resistance*. InTech; 2016. https://doi.org/10.5772/60478
- Katsnelson B.A. The combined action of chemicals. In: Kurlyandsky B.A., Filov V.A., eds. General Toxicology [Obshchaya toksikologiya]. Moscow: Meditsina; 2002: 497-520. (in Russian)
- Minigalieva I.A., Katsnelson B.A., Panov V.G., Varaksin A.N., Gurvich V.B., Privalova L.I., et al. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team. Toxicol. Rep. 2017; (4): 194-201. https://doi.org/10.1016/j.toxrep.2017.04.002 https://elibrary.ru/yvpfsv
- Olsvik P.A., Søfteland L. Mixture toxicity of chlorpyrifos-methyl, pirimiphosmethyl, and nonylphenol in Atlantic salmon (Salmo salar) hepatocytes. Toxicol. Rep. 2020; (7): 547–58. https://doi.org/10.1016/j.toxrep.2020.03.008
- Ünlü Endirlik B., Wincent E., Dreij K. Non-additive mixture effects of benzo[a] pyrene and pesticides in vitro and in vivo: Role of AhR signaling. Environ. Pollut. 2023; 316(Pt. 1): 120510. https://doi.org/10.1016/j.envpol.2022.120510
- Van Scoy A.R., Yue M., Deng X., Tjeerdema R.S. Environmental fate and toxicology of methomyl. *Rev. Environ. Contam. Toxicol.* 2013; 222: 93–109. https://doi.org/10.1007/978-1-4614-4717-7_3
- 11. Lin Z., Zhang W., Pang S., Huang Y., Mishra S., Bhatt P., et al. Current approaches to and future perspectives on methomyl degradation in contaminated

- soil/water environments. Molecules. 2020; 25(3): 738. https://doi.org/10.3390/ molecules25030738
- 12. Rakitskii V.N. The choice of doses when planning an experiment to study the combined action of chemicals. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 1985; 64(9): 61–2. https://elibrary.ru/xgpwsz (in Russian)
- 13. MR 4050–85. Setting up experimental studies to study the nature of the combined action of chemicals in order to develop preventive measures. Moscow: 1987.
- Khalafyan A.A. STATISTICA 6. Statistical Data Analysis [STATISTICA 6. Statisticheskii analiz dannykh]. Moscow: Binom-Press; 2007. (in Russian)
- Agresti A. Categorical Data Analysis. John Wiley & Sons; 2003.
- Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953; 3(6): 285-90.
- 17. US EPA. Registration eligibility decision methomyl; 1998. Available at: https://archive.epa.gov/pesticides/reregistration/web/pdf/0028red.pdf
- California Environmental Protection Agency. Summary of Pesticide Use Report Data 2018. Sacramento: California Department of Pesticide Regulation; 2018. Available at: https://cdpr.ca.gov/docs/pur/pur18rep/18sum.htm#pestuse

 19. US EPA. Pesticide Fact Sheet Number 177 Bifenthrin; 1988. Available at:
- https://tinyurl.com/4bu3p85j
- 20. Rosman Y., Makarovsky I., Bentur Y., Shrot S., Dushnistky T., Krivoy A Carbamate poisoning: treatment recommendations in the setting of a mass casualties event. Am. J. Emerg. Med. 2009; 27(9): 1117-24. https://doi.org/10.1016/j.ajem.2009.01.035
- 21. Wolansky M.J., McDaniel K.L., Moser V.C., Crofton K.M. Influence of dosing volume on the neurotoxicity of bifenthrin. Neurotoxicol. Teratol. 2007; 29(3): 377-84. https://doi.org/10.1016/j.ntt.2007.01.007
- Soderlund D.M., Clark J.M., Sheets L.P., Mullin L.S., Piccirillo V.J., Sargent D., et al. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. *Toxicology*. 2002; 171(1): 3–59. https://doi.org/10.1016/s0300-483x(01)00569-8

Литература

(п.п. 1–5, 7–11, 15–22 см. References)

- Кацнельсон Б.А. Комбинированное действие химических веществ. В кн.: Курляндский Б.А., Филов В.А., ред. Общая токсикология. М.: Медицина; 2002: 497-520.
- 12. Ракитский В.Н. Выбор доз при планировании эксперимента по изучению комбинированного действия химических веществ. Гигиена *u санитария*. 1985; 64(9): 61-2. https://elibrary.ru/xgpwsz
- МР 4050-85. Постановка экспериментальных исследований по изучению характера комбинированного действия химических веществ с целью разработки профилактических мероприятий. М.; 1987.
- Халафян А.А. STATISTICA 6. Статистический анализ данных. М.: Binom-Press: 2007.

Information about the authors

Tatiana E. Veshchemova, MD, PhD, senior researcher at the Occupational Hygiene Department of the Institute of Hygiene, Toxicology of Pesticides and Chemical Safety of the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation, https://orcid.org/0000-0002-0444-1095 E-mail: veshchemova.te@fncg.ru

Gleb V. Masaltsev, PhD, head of the Department of Toxicology of the Institute of Hygiene, Toxicology of Pesticides and Chemical Safety of the Federal Scientific Center of Hygiene named after F. F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation, https://orcid.org/0000-0003-1539-1633 E-mail: masalcev.gv@fncg.ru

Valerii N. Rakitskii, MD, PhD, DSci., professor, academician of the Russian Academy of Sciences, Scientific Director of the Institute of Hygiene, Toxicology of Pesticides and Chemical Safety of the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation, https://orcid.org/0000-0002-9959-6507 E-mail: rakitskii.vn@fncg.ru

Elena G. Chkhvirkiya, MD, PhD, DSci., professor, chief researcher of the Department of Toxicology of the Institute of Hygiene, Toxicology of Pesticides and Chemical Safety of the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation, https://orcid.org/0000-0002-0519-3257 E-mail: chkhvirkiya.eg@fncg.ru

Sergey V. Kuzmin, MD, PhD, DSci., professor, Director of the Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation, https://orcid.org/0000-0002-0209-9732 E-mail: kuzmin.sv@fngg.ru

Aristides M. Tsatsakis, PhD, Director at the Toxicology Science and Research Centre in the Department of Forensic Sciences of the Medical School in the University of Crete and The University Hospital; Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece, https://orcid.org/0000-0003-3824-2462 E-mail: aris@med.uoc.gr

Сведения об авторах

Вещемова Татьяна Евгеньевна, канд. мед. наук, ст. науч. сотр. отд. гигиены труда Института гигиены, токсикологии пестицидов и химической безопасности ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, Россия. E-mail: veshchemova.te@fncg.ru

Масальцев Глеб Викторович, канд. биол. наук, зав. отд. токсикологии Института гигиены, токсикологии пестицидов и химической безопасности ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, Россия. E-mail: masalcev.gv@fncg.ru

Ракитский Валерий Николаевич, доктор мед. наук, профессор, академик РАН, научный руководитель Института гигиены, токсикологии пестицидов и химической безопасности ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, Россия. E-mail: rakitskii.vn@fncg.ru

Чхвиркия Елена Григорьевна, доктор мед. наук, профессор, гл. науч. сотр. отд. токсикологии Института гигиены, токсикологии пестицидов и химической безопасности ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, Россия. E-mail: chkhvirkiya.eg@fncg.ru

Кузьмин Сергей Владимирович, доктор мед. наук, профессор, директор ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, Россия. E-mail: kuzmin.sv@fncg.ru Цацакис Аристидис Михаил, доктор философии по органической химии, директор Научно-исследовательского центра токсикологии при Отделении судебной медицины Медицинской школы Критского университета и Университетского госпиталя, 71003, Ираклион, Греция. E-mail: aris@med.uoc.gr