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РЕЗЮМЕ

Введение. Проблема биоплёнок в системах питьевого водоснабжения хорошо изучена, однако их наличие в бутилированной воде требует дополни-
тельного внимания.
Цель исследования – оценка микробиологического состава и потенциального риска прозрачных взвесей (осадка), обнаруженных в бутилированной 
минеральной природной столовой негазированной питьевой воде.
Материалы и методы. Проведено комплексное санитарно-микробиологическое исследование воды. Стандартный анализ на соответствие требо-
ваниям ТР ЕАЭС 044/2017* включал определение нормируемых показателей (ОМЧ, БГКП, E. coli, P. aeruginosa, энтерококки) по ГОСТ 34786–2021. 
Для анализа взвесей использованы методы концентрирования больших объёмов воды (1 и 3 дм³) путём центрифугирования и мембранной фильтрации 
с последующим посевом на питательные среды (МПА, среда Эндо, Сабуро, Br, MRS) прямым методом и через тиогликолевую среду накопления. 
Видовая идентификация всех выросших колоний выполнена методом времяпролётной масс-спектрометрии (MALDI-TOF MS). Дополнительно про-
водили исследования на колифаги и паразитологические объекты.
Результаты. Стандартный анализ 250 см³ воды не выявил E. coli, БГКП и других нормируемых патогенов. Зафиксировано превышение норматива 
по ОМЧ при температуре плюс 22 °C в два раза (289 КОЕ/см³), однако в данном случае это исследование в соответствии с ТР ЕАЭС 044/2017 
не требовалось проводить. После концентрирования 1 и 3 дм³ воды в составе взвесей идентифицированы разнообразные микроорганизмы, в том  
числе Escherichia coli, Kocuria rhizophila, Micrococcus luteus, Aquabacterium parvum, Microbacterium testaceum, а также грибы Aspergillus fumigatus  
и Syncephalastrum racemosum. Колифаги и паразитарные объекты не обнаружены.
Ограничения исследования. Исследование проведено однократно на одной партии бутилированной минеральной природной питьевой воды. Необходи-
мо выполнить аналогичные исследования биоплёнок другого состава для подтверждения правильности выработанной тактики.
Заключение. Результаты демонстрируют, что стандартных методов контроля, основанных на анализе малых объёмов (до 250 см³), может быть 
недостаточно для выявления микробиологической контаминации, присутствующей в виде локальных скоплений (взвесей или биоплёнок) в бутили-
рованной воде. Обнаружение E. coli после концентрирования указывает на фекальное загрязнение и потенциальный эпидемиологический риск. Полу-
ченные данные обосновывают необходимость разработки и внедрения расширенных протоколов контроля с концентрированием репрезентативных 
объёмов воды и использованием сред накопления для обеспечения безопасности упакованной питьевой воды.
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Введение

Современная микробиология рассматривает биоплёнки 
как преобладающую форму существования микроорганиз-
мов в окружающей среде [1, 2]. Эти структурированные со-
общества, заключённые в вырабатываемый ими внеклеточ-
ный полимерный матрикс (ВПМ), демонстрируют не только 
высокую степень организации, но и исключительную устой-
чивость к неблагоприятным факторам, в том числе дезин-
фектантам и антибиотикам [3, 4]. ВПМ выполняет роль за-
щитного барьера, обеспечивает механическую стабильность 
и выступает в качестве накопителя питательных веществ, 
делая биоплёнки доминирующей стратегией выживания 
микроорганизмов [5].

В контексте безопасности питьевой воды проблема био-
плёнок долгое время ассоциировалась с системами центра-
лизованного водоснабжения, однако накопленные научные 
данные свидетельствуют о том, что бутилированная питье-
вая вода не является стерильной средой и также подвержена 
биологическому обрастанию [6]. Существуют потенциаль-

ные микробиологические риски, связанные с формирова-
нием аутохтонных микробных сообществ, как в толще воды 
(планктонные биоплёнки, взвеси), так и на всех этапах про-
изводственно-логистической цепи: от исходной воды и тех-
нологического оборудования до внутренних поверхностей 
упаковки (пристенные биоплёнки) [6, 7].

Источники контаминации имеют множественный ха-
рактер. Во-первых, это исходная вода, которая даже по-
сле многоступенчатой очистки может содержать низкие 
концентрации олиготрофных (способных выживать в ус-
ловиях низкого содержания питательных веществ) микро-
организмов [8, 9]. Во-вторых, это технологическое обору-
дование: линии розлива, ёмкости для хранения, форсунки 
и клапаны, где могут формироваться стабильные пристен-
ные биоплёнки, служащие постоянным источником кон-
таминации продукта. В-третьих, и это особенно важно, –  
сама упаковка. Внутренняя поверхность бутылей из поли-
этилентерефталата (ПЭТ) или других полимеров является 
идеальным субстратом для первичной адгезии микроор-
ганизмов. Микроскопические царапины, шероховатости, 
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ABSTRACT
Introduction. The problem of biofilms in drinking water supply systems is well-studied; however, their presence in bottled water requires additional attention. 
The aim of the study was to assess the microbiological composition and potential risk of transparent suspensions (sediment) found in bottled natural mineral table 
non-carbonated drinking water.
Materials and methods. A comprehensive sanitary-microbiological study of the water was conducted. The standard analysis for compliance with the requirements 
of TR EAEU 044/2017 included the determination of standardized indicators (TVC, Coliform bacteria, E. coli, P. aeruginosa, enterococci) according to 
GOST 34786–2021. For the analysis of suspensions, there were used methods of concentrating large volumes of water (1 and 3 dm³) by centrifugation and 
membrane filtration followed by inoculation onto nutrient media (Nutrient Agar, Endo Agar, Sabouraud Agar, Brolacin agar, MRS agar) by the direct method 
and via thioglycolate enrichment broth. Species identification of all grown colonies was performed using time-of-flight mass spectrometry (MALDI-TOF MS). 
Additional studies for coliphages and parasitological objects were also conducted.
Results. A standard analysis of two hundred fifty cm³ of water did not detect E. coli, coliform bacteria (BGKP), or other regulated pathogens. An excess of the 
standard for total microbial count (TMC) at 22 °C by a factor of 2 (289 CFU/cm³) was recorded; however, according to TR EAEU 044/2017, this test was not 
required in this case. After concentrating 1 and 3 dm³ of water, diverse microorganisms were identified in the suspended solids, including Escherichia coli, Kocuria 
rhizophila, Micrococcus luteus, Aquabacterium parvum, Microbacterium testaceum, as well as the fungi Aspergillus fumigatus and Syncephalastrum racemosum. 
Coliphages and parasitic objects were not detected.
Limitations. The study was conducted once on one batch of bottled natural mineral drinking water. It is necessary to conduct a series of similar studies on biofilms 
of a different composition to confirm the correctness of the developed tactics.
Conclusion. The results demonstrate that standard control methods based on the analysis of small volumes (up to 250 cm³) may be insufficient to detect microbiological 
contamination present as local aggregates (suspensions or biofilms) in bottled water. The detection of E. coli after concentration indicates fecal contamination and a 
potential epidemiological risk. The obtained data justify the need to develop and implement extended control protocols, including the concentration of representative 
water volumes and use of enrichment media, to ensure the safety of packaged drinking water.
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а также миграция низкомолекулярных органических со-
единений (пластификаторов, остатков мономеров) из ма-
териала упаковки в воду создают благоприятные условия 
для закрепления пионерных бактерий и начала процесса 
биообрастания [10, 11].

Процесс формирования биоплёнки в бутилированной 
воде является каскадным и начинается с адгезии микро-
организмов на поверхности. Исследования подтверждают, 
что в бутилированной воде могут формироваться сложные 
многовидовые консорциумы. В частности, установлено 
присутствие биоплёнкообразующих и мультирезистент-
ных штаммов Escherichia coli и других условно патогенных 
бактерий, что превращает упаковку в потенциальный эко-
логический резервуар микроорганизмов, имеющих гиги-
еническое значение [12]. Другое исследование выявило, 
что биоплёнки в бутилированной воде могут быть пред-
ставлены сообществами хемогетеротрофных актинобак-
терий, чьё развитие гипотетически связано с адсорбцион-
ными свойствами используемого на этапе водоподготовки 
активированного угля, который аккумулирует органику 
и становится платформой для адгезии и роста микроорга-
низмов [13].

Ограничивающим фактором для роста биоплёнки обыч-
но является доступность питательных веществ, в основном 
предоставляемых биоразлагаемыми компонентами, которые 
выщелачиваются из используемых материалов и из самой 
водной среды. Интенсивность разрастания биоплёнки, ус-
ловия и степень накопления в ней патогенных микроорга-
низмов требуют дальнейшего изучения [14–17].

Первыми на поверхности всегда поселяются бакте-
рии, среди которых преобладают формы с мощной слизи-
стой капсулой, скрепляющей клетки друг с другом. Роды, 
обнаруженные в биоплёнках, включают Enterococcus, 
Staphylococcus, Pseudomonas, Ralstonia, Mycobacteria, а также 
семейство Enterobacteriaceae и другие грамотрицательные 
бактерии [18–20]. Как бактерии, так и грибы способны об-
разовывать биоплёнки. Нитчатые грибы и бактерии могут 
сосуществовать внутри этих систем, образуя межцарствен-
ные биоплёнки. При этом необходимо отметить, что устой-
чивость биоплёнки напрямую зависит от её видового 
разнообразия, и смешанные популяции обладают более 
высокой устойчивостью к антибиотикам и дезинфицирую-
щим агентам [21–26].

В исследовании [21] показано, что присутствие 
Penicillium brevicompactum или Penicillium expansum в био-
плёнках значительно снижало возможность инактивации 
и восприимчивость бактерий к дезинфекции, особенно 
к высоким концентрациям гипохлорита натрия, по сравне-
нию с обеззараживанием воды в системах питьевого водо-
снабжения с бактериальными биоплёнками.

Требования к качеству воды, пригодной для питьевых 
целей, постоянно растут, поскольку расширяется сфера 
знаний о критериях её безопасности [27–29]. Для оценки 
упакованной питьевой воды (ТР ЕАЭС 044/2017) микро-
биологическую безопасность определяют по основным по-
казателям бактериальной обсеменённости, таким как общее 
микробное число (ОМЧ) (ОМЧ при температуре плюс 22 °C, 
ОМЧ при температуре плюс 37 °C), Escherichia coli (E. coli), 
P. aeruginosa, бактерии группы кишечных палочек (БГКП) 
и энтерококки, в относительно небольших регламентиро-
ванных объёмах. Однако данный подход может оказаться 
недостаточно чувствительным для выявления микробной 
контаминации, присутствующей в виде локальных скопле-
ний или взвесей.

В ходе настоящего исследования в бутилированной ми-
неральной воде были визуально обнаружены прозрачные 
взвеси (осадок) неизвестного происхождения.

Цель исследования – изучение состава данных взвесей 
с применением методов концентрирования и современной 
видовой идентификации для оценки их микробиологиче-
ской природы и потенциального риска.

Материалы и методы
Объектом исследования была бутилированная мине-

ральная природная столовая негазированная питьевая вода 
с общей минерализацией до 1 г/дм³, разлитая в стеклянную 
тару. Исследованию подвергли партию с датой изготовления 
07.2024, представленную в 90 стеклянных бутылках объёмом 
1 л каждая с ненарушенной упаковкой. Визуальный осмотр 
выявил наличие прозрачных взвесей (осадка) неизвестного 
происхождения в содержимом бутылок.

Исследования проводили в соответствии с ГОСТ 
34786–20211. Определяли ОМЧ при температуре плюс 22 
и плюс 37 °C, БГКП, E. coli, энтерококки и P. aeruginosa 
в объёмах, предусмотренных стандартом. Параллельно 
проводили санитарно-паразитологические исследования 
концентрированных объёмов воды (10 и 50 дм³) методом 
световой микроскопии в соответствии с МУК 4.2.2314–082,  
а также анализ на наличие колифагов в объёме 100 см³ 
как косвенного показателя вирусного загрязнения по  
МУК 4.2.3963–233.

Для анализа взвесей использовали методы концен-
трирования больших объёмов воды. Центрифугирование: 
при 3000 об./мин в течение 10 мин центрифугировали  
1 дм³ воды при температуре плюс 4 °C. Полученный оса-
док делили на три части: одну исследовали микроскопи-
чески после окрашивания по Романовскому, вторую вы-
севали на питательные среды прямым посевом, третью 
инкубировали в тиогликолевой среде (среда накопления) 
с последующим высевом. Мембранная фильтрация: 3 дм³ 
воды фильтровали через аналитическую трековую мем-
брану (поры 2,5–3 мкм) и фильтр из нитрата целлюлозы 
(поры 0,45 мкм). С фильтров делали смывы, которые ис-
следовали прямым посевом и после накопления в тиогли-
колевой среде.

Для предварительной оценки биологической природы взве-
сей использовали каталазный экспресс-тест по МР 4.2.0161–194.

В работе использовали следующие питательные среды: 
мясо-пептонный МПА-агар, среда Эндо и среда Сабуро (все 
HiMedia, Индия), тиогликолевая среда, агар для барицелл, 
питательная среда для лактобацилл сухая (агар MRS) (все 
Conda, Испания), кровь баранья дефибринированная – Br 
и энтерококковый агар (все Россия).

Видовую идентификацию всех выросших на питатель-
ных средах изолированных колоний проводили методом 
матрично-активированной лазерной десорбции/ионизации 
с времяпролётным масс-анализатором (MALDI-TOF MS, 
Bruker, Германия). Идентификация считалась достоверной 
при значении коэффициента достоверности (SCORE) > 2 
для вида и в диапазоне 1,7–2 для рода. Все этапы исследова-
ний проводили в соответствии с ГОСТ Р 70152–20225. Осу-
ществляли контроль стерильности оборудования, качества 
питательных сред с использованием контрольных штаммов 
микроорганизмов (E. coli ATCC 10536, P. aeruginosa ATCC 
10145 и др.), а также санитарно-микробиологический кон-
троль воздуха и поверхностей в рабочих помещениях.

1 ГОСТ 34786–2021 «Вода питьевая. Методы определения об-
щего числа микроорганизмов, колиформных бактерий, Escherichia 
coli, Pseudomonas aeruginosa и энтерококков».

2 МУК 4.2.2314–08 «Методы санитарно-паразитологического 
анализа воды». Документ утверждён и введён в действие 18 января 
2008 г. Главным государственным санитарным врачом Российской 
Федерации Г.Г. Онищенко.

3 МУК 4.2.3963–23 «Бактериологические методы исследования 
воды», утв. Федеральной службой по надзору в сфере защиты прав 
потребителей и благополучия человека 1 сентября 2023 г.

4 МР 4.2.0161–19 «Методы индикации биологических плёнок 
микроорганизмов на абиотических объектах». Документ утверждён 
Федеральной службой по надзору в сфере защиты прав потребите-
лей и благополучия человека 23 декабря 2019 г.

5 ГОСТ Р 70152–2022 «Качество воды. Методы внутреннего 
лабораторного контроля качества проведения микробиологических 
и паразитологических исследований». Дата введения в действие:  
1 января 2023 г.
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Т а б л и ц а  1  /  T a b l e  1
Результаты исследований бутилированной питьевой воды по микробиологическим показателям
Results of studies of bottled drinking water for microbiological indicators

Показатель 
Indicator

Полученный результат 
The result obtained

Норматив ТР ЕАЭС 044/2017 
Standard ТР ЕАЭС 044/2017

ОМЧ при температуре плюс 22 °C, КОЕ/см3 
Тotal microbial count at a temperature of plus 22 °C, CFU/cm3

289 ≤ 100

ОМЧ при температуре плюс 37 °C, КОЕ/см3 
Тotal microbial count at a temperature of plus 37 °C, CFU/cm3

18 ≤ 20

БГКП, КОЕ/250 см3 | Сoliform bacteria, CFU/250 cm3 Отсутствие | Absence Отсутствие | Absence
E. coli, КОЕ/250 см3 | CFU/250 cm3 Отсутствие | Absence Отсутствие | Absence
Энтерококки, КОЕ/250 см3 | Enterococci, CFU/250 cm3 Отсутствие | Absence Отсутствие | Absence
Pseudomonas aeruginosa, КОЕ/250 см3 | CFU/250 cm3 Отсутствие | Absence Отсутствие | Absence

Т а б л и ц а  2  /  T a b l e  2
Результаты микробиологических исследований 1 дм3 питьевой воды
Results of microbiological studies of 1 dm3 of drinking water

Показатель 
Indicator

Метод концентрации воды (центрифугирование) / Water concentration method (centrifugation)

Осадок / Sediment

исходный / original накопление 
accumalationмикроскопия / microscopy посев / seeding

Бактерии / Bacteria Обнаружено / Detected Escherichia coli 
Aquabacterium parvum

Escherichia coli 
Kocuria rhizophila 
Micrococcus luteus 
Microbacterium testaceum

Грибы / Fungi Не обнаружено / Not detected Aspergillus fumigatus Syncephalastrum racemosum

Т а б л и ц а  3  /  T a b l e  3
Результаты микробиологических исследований 3 дм3 питьевой воды
Results of microbiological studies of 3 dm3 of drinking water

Показатель 
Indicator

Метод концентрации воды (фильтрация) / Water concentration method (centrifugation)

Фильтр / Filter

Исходный / Initial Накопление / Аccumulation

Бактерии / Bacteria Не обнаружено / Not detected Escherichia coli

Грибы / Fungi Aspergillus fumigatus Syncephalastrum racemosum

Результаты

Определение нормируемых показателей. Результаты иссле-
дования по определению нормируемых показателей БГКП, 
E. coli, ОМЧ при температуре плюс 22 °C, ОМЧ при темпе-
ратуре плюс 37 °C, энтерококков, P. aeruginosa представлены 
в табл. 1.

В результате исследования воды бутилированной питье-
вой в соответствии с ТР ЕАЭС 044/2017 нормируемые пока-
затели БГКП, E. coli, энтерококки, P. aeruginosa не обнару-
жены. При определении показателя ОМЧ при температуре 
плюс 37 °С в 1 см3 исходной воды общее число выросших 
в толще агара микроорганизмов не превышало норматива. 
При определении показателя ОМЧ при температуре плюс 
22 °С обнаружено количество микроорганизмов, в два раза 
превышающее норматив, но поскольку для природной пи-
тьевой воды в потребительской упаковке показатель ОМЧ 
определяется только в течение 12 ч после розлива, данный 
результат не может являться основанием для заключения 
о несоответствии качества воды на момент её производства.

В результате исследования бутилированной питьевой 
воды по МУК 4.2.2314–08 и МУК 4.2.3963–23 колифаги 
и паразитарные объекты не обнаружены.

Исследование взвесей (прозрачных матриксов). Визуаль-
ным и микроскопическим методами в исследуемой воде 
обнаружены прозрачные матриксы неизвестного проис-

хождения. После концентрации проб воды объёмом 250 см3 
на фильтре из нитрата целлюлозы проводили каталазный 
экспресс-тест. Положительный каталазный тест позво-
лил предположить наличие каталазоположительных форм 
бактерий на исследуемой поверхности фильтра. Для опре-
деления состава биоплёнок после концентрации 1 л воды 
на центрифуге полученный осадок разделили на три части. 
Первую часть получившегося осадка окрашивали по Ро-
мановскому. При микроскопическом исследовании окра-
шенных препаратов осадка из воды обнаружены скопления 
клеток, характеризующиеся палочковидными бактериями 
цилиндрической формы и кокковой сборкой из нескольких 
микроорганизмов. Мицелий микромицетов не выявлен.

При посеве второй части осадка на питательные среды 
через сутки инкубации обнаружен рост бактерий Escherichia 
coli, Aquabacterium parvum на среде МПА и гриба Aspergillus 
fumigatus на средах МПА и MRS. На чашках, инкубированных 
в анаэробной станции, рост микроорганизмов не обнаружен.

При инкубации третьей части осадка в тиогликолевой 
среде в посеве из среды накопления обнаружен рост бакте-
рий: Escherichia coli, Microbacterium testaceum на Бруцелл-ага-
ре, Kocuria rhizophila, Micrococcus luteus на среде МПА, гриба 
Syncephalastrum racemosum на средах Бруцелл-агар и Сабуро. 
На чашках, инкубированных в анаэробной станции, рост 
микроорганизмов не обнаружен. Результаты исследований 
представлены в табл. 2.
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Оригинальная статья 

вированного угля, выступающего аккумулятором орга-
нических веществ, а также местом адгезии спор актино-
бактерий и бактериальных клеток [31, 32]. Дальнейшие 
исследования подтвердили, что гранулированный активи-
рованный уголь действительно служит ключевым «биоре-
актором» и источником олиготрофной микрофлоры в си-
стемах подготовки воды [33].

Заключение
Проведённое комплексное исследование позволило 

сформулировать ряд принципиально важных выводов, име-
ющих значение для совершенствования системы контроля 
безопасности бутилированных питьевых вод. Продемон-
стрировано, что стандартизированные подходы, основан-
ные на анализе фиксированных малых объёмов (до 250 см³), 
могут давать ложноотрицательные результаты при оценке 
микробиологической безопасности. В исследуемом образце 
Escherichia coli, ключевой индикатор фекальной контами-
нации, не обнаружена в 250 см³, но была однозначно иден-
тифицирована после концентрирования объёмов 1 и 3 дм³ 
с последующим использованием тиогликолевой среды на-
копления. Это свидетельствует о неоднородном, кластерном 
распределении микроорганизмов в объёме продукции и на-
личии так называемой аналитической слепой зоны при ру-
тинном контроле.

С помощью комплекса методов (каталазный тест, микро-
скопия, масс-спектрометрическая идентификация) удалось 
однозначно доказать, что прозрачные матриксы представ-
ляют собой не абиогенные частицы, а структурированные 
микробные ассоциации (бесплёночного типа), включаю-
щие как бактериальные, так и грибные компоненты. Выяв-
ленное биоразнообразие (Escherichia coli, Kocuria rhizophila, 
Micrococcus luteus, Aquabacterium parvum, Microbacterium 
testaceum, Aspergillus fumigatus, Syncephalastrum racemosum) 
указывает на возможность формирования в бутилированной 
воде сложных аутохтонных микробных ценозов, выполняю-
щих функцию резервуара гигиенически значимых микроор-
ганизмов. 

Обнаружение в составе взвесей Escherichia coli является 
маркёром фекального загрязнения, указывающим на нару-
шения в системе обеспечения санитарно-технологической 
безопасности на одном из этапов производства. Данный 
факт трансформирует потенциальный риск в конкрет-
ную эпидемиологическую угрозу, прежде всего для групп 
населения с ослабленным иммунным статусом. Присут-
ствие других изолятов, в частности грибов родов Aspergillus 
и Syncephalastrum, потенцирует риск за счёт возможной 
продукции микотоксинов и усиления устойчивости ассо-
циированных бактерий к воздействию неблагоприятных 
факторов.

Полученные данные убедительно доказывают, что  
для адекватной оценки микробиологических рисков, свя-
занных с бутилированной водой, необходим двухуровневый 
подход:

•	первый уровень – обязательный рутинный контроль по 
действующим нормативам;

•	второй уровень – внедрение расширенных протоколов 
исследования при наличии визуальных отклонений (по-
мутнение, взвеси, осадок).
В такие протоколы должны входить концентрирование 

репрезентативных объёмов воды (1–3 дм³) и использова-
ние методов, направленных на выявление повреждённых, 
некультивируемых и ассоциированных в биоплёнки кле-
ток (накопительные среды, молекулярно-генетические 
методы).

Таким образом, результаты работы выявляют системную 
проблему в области методологии контроля. Дальнейшая 
разработка и нормативное закрепление алгоритмов расши-
ренного микробиологического анализа для упакованных 
питьевых вод является актуальной задачей, направленной 
на минимизацию рисков для здоровья потребителей.

Анализ 3 дм³ воды методом фильтрации подтвердил эти 
находки (табл. 3). В посевах с аналитической трековой мем-
браны обнаружен рост Escherichia coli (из среды накопления) 
на МПА, Br и MRS, Aspergillus fumigatus (из 0,9%-го изотони-
ческого раствора) на МПА и среде Сабуро и Syncephalastrum 
racemosum (из среды накопления) на среде Сабуро.

При посеве смывов с бактериального фильтра из нитрата 
целлюлозы на питательные среды обнаружен рост Aspergillus 
fumigatus (из 0,9%-го изотонического раствора) на МПА 
и среде Сабуро и Escherichia coli (из среды накопления) 
на МПА, Br и MRS. Важным результатом является повтор-
ное выделение E. coli из среды накопления. На чашках, 
инкубированных в анаэробной станции, рост микроорга-
низмов с аналитической трековой мембраны и с фильтра 
из нитрата целлюлозы не обнаружен. Результаты представ-
лены в табл. 3.

Обсуждение
Согласно Техническому регламенту, показатель ОМЧ 

(общее микробное число) при температуре плюс 22 °C яв-
ляется технологическим нормативом и подлежит контролю 
исключительно производителем в течение 12 ч после роз-
лива для подтверждения стабильности производственного 
процесса. Последующий рост мезофильной сапрофитной 
микрофлоры в бутилированной воде в процессе хране-
ния является ожидаемым явлением и не регламентируется 
как показатель безопасности для готовой продукции на пол-
ке. Таким образом, выявленное превышение норматива 
по ОМЧ при температуре плюс 22 °С отражает естественную 
динамику микробиоты в упакованной воде. 

Ключевыми для оценки безопасности подтверждёнными 
результатами остаются отсутствие в нормируемом объёме 
(250 см³) патогенных и индикаторных микроорганизмов 
(E. coli, БГКП, P. aeruginosa, энтерококки). Однако прове-
дённое исследование демонстрирует ограниченность стан-
дартного подхода к контролю бутилированной воды. Хотя 
анализ 250 см³ воды не выявил E. coli, её наличие установ-
лено после концентрирования больших объёмов (1 и 3 дм³) 
и использования обогатительной среды. Следовательно, 
данный микроорганизм присутствовал в воде в виде локаль-
ных скоплений (взвесей), не улавливаемых при рутинном 
анализе. Обнаружение E. coli в питьевой воде, даже в малых 
количествах и в составе взвесей, значимо с эпидемиологи-
ческой точки зрения, так как свидетельствует о фекальном 
загрязнении и потенциальном риске для потребителей, осо-
бенно с ослабленным иммунитетом [5].

В составе биоплёнки присутствовали условно патоген-
ные бактерии и грибы:

•	Escherichia coli, представитель кишечной микрофлоры че-
ловека и животных, – грамотрицательная каталазополо-
жительная палочковидная бактерия, способная длитель-
ное время сохранятся в почве и в воде;

•	Kocuria rhizophila – почвенная грамположительная ката-
лазоположительная бактерия-сапрофит;

•	Aquabacterium parvum – грамотрицательная каталазоотри-
цательная бактерия, входящая в состав биоплёнок;

•	Micrococcus luteus – грамположительная каталазолполо-
жительная актинобактерия-сапрофит, широко распро-
странённая в почве и воде;

•	Microbacterium testaceum – эндофитная грамположитель-
ная бактерия, обитающая в растениях-хозяевах;

•	Aspergillus fumigatus – плесневый гриб, один из наиболее 
распространённых в почве;

•	Syncephalástrum racemosum – мукоровый гриб, распро-
странённый в почвах субтропических регионов.
Это не единственный случай обнаружения биоплёнок 

в бутилированной питьевой воде. Так, в работе [30] по-
казано, что в исследованной бутилированной воде био-
плёнки представлены скоплением тонкого мицелия хе-
могетеротрофных микроорганизмов класса Actinobacteria. 
Авторами высказана гипотеза о негативной роли акти-
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