Preview

Гигиена и санитария

Расширенный поиск

Воздействие наночастиц металлов на почвенный биоценоз (обзор литературы)

https://doi.org/10.47470/0016-9900-2020-99-10-1061-1066

Полный текст:

Аннотация

Обзор литературы содержит анализ и обобщение данных об исследовании эффектов воздействия наночастиц металлов на почву, растения и микробные сообщества. Поглощение наночастиц почвой может неблагоприятно сказываться на состоянии почвенной биоты и растений как её компонентов, представляя серьёзный риск для здоровья человека. Показано, что загрязнение почвы металлами в наноформе носит выраженный негативный характер, заключающийся в нарушении биоценоза, гибели её обитателей и снижении их воспроизводства. При этом степень негативного воздействия определяется видом нанометалла и составом почвенной фауны. Экологические последствия нанотехнологий предложено изучать и по сложным взаимодействиям между растениями и нанопрепаратами. В обзоре представлено новое направление нанотехнологий - способ извлечения наночастиц металлов из растений вследствие их способности к аккумуляции в листьях. Основным преимуществом «зелёного» способа получения перед «химическим» является снижение токсических свойств нанометаллов по сравнению с «химическими» аналогами. Перспективным является создание конъюгатов наночастиц металлов и веществ растительного происхождения. Конъюгаты наночастиц серебра и фенольные группы, содержащиеся в листьях, получили название «растительных антибиотиков» и не имеют побочных эффектов на организм человека. В обзоре представлен неблагоприятный дозозависимый эффект влияния наночастиц TiO, CuO и других наночастиц металлов на рост корней, всхожесть семян, наращивание растительной биомассы, видовое разнообразие, антимикробную и ферментативную активность почвенной микрофлоры. Напротив, в некоторых исследованиях подчёркивается перспективность использования нанокомпозитов таких металлов, как медь, железо, цинк, серебро, на почву и растения в связи с их бактерицидными свойствами. Совместное объединение усилий учёных позволит определить возможные последствия применения наноматериалов и защиту от потенциальной угрозы неконтролируемого развития нанотехнологий для окружающей природной среды. Поиск и отбор источников для обзора осуществлены с использованием открытых баз данных, включая PubMed, Scopus, Google Scholar и РИНЦ, за период с 2005 по 2019 г.

Об авторах

Лариса Михайловна Соседова
ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»; ФГБОУ ВО «Ангарский государственный технический университет»
Россия

Доктор мед. наук, профессор, зав. лаб. биомоделирования и трансляционной медицины ФГБНУ ВСИМЭИ, 665827, Ангарск; профессор кафедры экологии и безопасности деятельности человека ФГБОУ ВО АнГТУ, 665835, Ангарск.

e-mail: sosedlar@mail.ru



М. А. Новиков
ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»
Россия


Е. А. Титов
ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»
Россия


Список литературы

1. Corsi I., Winther-Nielsen M., Sethi R., Punta C., Della T. C., Libralato G., et al. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol. Environ. Saf. 2018; 154: 237-44. https://doi.org/10.1016/j.ecoenv.2018.02.037

2. George S., Xia T., Rallo R., Zhao Y., Ji Z., Lin S., et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano. 2011; 5(3): 1805-17. https://doi.org/10.1021/nn102734s

3. Гладкова М.М., Терехова В.А. Инженерные наноматериалы в почве: источники поступления и пути миграции. Вестник Московского университета. Серия 17: Почвоведение. 2013; (3): 34-9

4. Omouria Z., Hawarib J., Fourniera M., Robidouxa P.Y. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil. Ecotoxicol. Environ. Saf. 2018; 147: 1-8. https://doi.org/10.1016/j.ecoenv.2017.08.018

5. El-Temsah Y.S., Joner E.J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere. 2012; 89(1): 76-82.

6. Brami C., Glover A.R., Butt K.R., Lowe C.N. Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol. Environ. Saf. 2017; 141: 64-9. https://doi.org/10.1016/j.ecoenv.2017.03.015

7. Gautama A., Raya A., Mukherjeea S., Dasa S., Palb K., Dasc S., et al. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol. Environ. Saf. 2018; 148: 620-31. https://doi.org/10.1016/j.ecoenv.2017.11.008

8. Gomes S.I.L., Murphy M., Nielsen M.T., Kristiansen S.M., Amorim M.J.B., Scott-Fordsmand J.J. Cu-nanoparticles ecotoxicity - explored and explained? Chemosphere. 2015; 139: 240-5. https://doi.org/10.1016/j.chemosphere.2015.06.045

9. Concha-Guerrero S.I., Souza Brito E.M., Piñón-Castillo H.A., Tarango-Rivero S.H., Caretta C.A., Luna-Velasco A., et al. Effect of CuO nanoparticles over isolated Bacterial strains from agricultural soil. J. Nanomaterials. 2014; 2014: 148743. https://doi.org/10.1155/2014/148743

10. Joskoa I., Oleszczukb P., Futa B. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma. 2014; 232-234: 528-37. https://doi.org/10.1016/j.geoderma.2014.06.012

11. Kim S., Sin H., Lee S., Lee I. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J. Microbiol. Biotechnol. 2013; 23(9): 1279-86. https://doi.org/10.4014/jmb.1304.04084

12. Тимошенко А.Н., Колесников С.И., Казеев К.Ш., Акименко Ю.В. Изменение биологических показателей серопесков после загрязнения наночастицами Cu, Zn и Ni. Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2019; (2): 106-11. https://doi.org/10.23683/0321-3005-2019-2-106-111

13. Janvier C., Villeneuve F., Alabouvette C., Edel-Hermann V., Mateille T., Steinberg C. Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol. Biochem. 2007; 39(1): 1-23. https://doi.org/10.1016/j.soilbio.2006.07.001

14. Kolesnikov S.I., Timoshenko A.N., Kazeev K.Sh., Akimenko Yu.V., Myasnikova M.A. Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems. Eurasian Soil Sc. 2019; 52(8): 982-7. https://doi.org/10.1134/S106422931908009X

15. Яушева Е.В., Сизова Е.А., Гавриш И.А., Лебедев С.В., Каюмов Ф.Г. Действие наночастиц AL2O3 на почвенный микробиоценоз, состояние антиоксидантной системы и микрофлору кишечника красного калифорнийского червя (Eisenia foetida). Сельскохозяйственная биология. 2017; 52(1): 191-9. https://doi.org/10.15389/agrobiology.2017.1.191rus

16. Цицуашвили В.С., Минкина Т.М., Невидомская Д.Г., Раджпут В.Д., Манджиева С.С., Сушкова С.Н. и соавт. Воздействие наночастиц меди на растения и почвенные микроорганизмы (обзор литературы). Вестник аграрной науки Дона. 2017; (3): 93-100.

17. Manesh R.R., Grassi G., Bergami E., Marques-Santos L.F., Faleri C., Liberatori G., et al. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol. Environ. Saf. 2018; 148: 359-66. https://doi.org/10.1016/j.ecoenv.2017.10.051

18. Ye X., Li H., Wang Q., Chai R., Ma C., Gaoa H., et al. Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice. Ecotoxicol. Environ. Saf. 2018; 148: 418-25. https://doi.org/10.1016/j.ecoenv.2017.10.056

19. Manquián-Cerda K., Cruces E., Rubio M.A., Reyes C., Arancibia-Miranda N. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Ecotoxicol. Environmen. Saf. 2017; 145: 69-77. https://doi.org/10.1016/j.ecoenv.2017.07.004

20. Harshiny M., Matheswaran M., Arthanareeswaran G., Kumaran S., Rajasree S. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol. Environ. Saf. 2015; 121: 135-41. https://doi.org/10.1016/j.ecoenv.2015.04.041

21. Sathiya Priya R., Geetha D., Ramesh P.S. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs - A comparative study. Ecotoxicol. Environ. Saf. 2016; 134(Pt. 2): 308-18. https://doi.org/10.1016/j.ecoenv.2015.07.037

22. Kokila T., Ramesh P.S., Geetha D. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activitie. Ecotoxicol. Environ. Saf. 2016; 134(Pt. 2): 467-73. https://doi.org/10.1016/j.ecoenv.2016.03.021

23. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanopar-ticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4

24. Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles - an antimicrobial study. Sci. Technol. Adv. Mater. 2008; 9(3): 035004. https://doi.org/10.1088/1468-6996/9/3/035004

25. Баутин В.М., ред. Нанотехнологии и наноматериалы в сельском хозяйстве. М.; 2008.

26. Федоренко В.Ф., Ерохин М.Н., Балабанов В.И., Буклагин Д.С., Голубев И.Г., Ищенко С.А. Нанотехнологии и наноматериалы в агропромышленном комплексе. М.; 2011.

27. Barabanov P.V., Gerasimov A.V., Blinov A.V., Kravtsov A.A., Kravtsov V.A. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol. Environ. Saf. 2018; 147: 715-9. https://doi.org/10.1016/j.ecoenv.2017.09.024

28. Amooaghaie R., Reza Saeri M., Azizi M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol. Environ. Safety. 2015; 120: 400-8. https://doi.org/10.1016/j.ecoenv.2015.06.025

29. Cvjetko P., Milošić A., Domijan A.M., Vinković Vrček I., Tolić S., Štefanić P.P., et al. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017; 137: 18-28. https://doi.org/10.1016/j.ecoenv.2016.11.009

30. Foltête A.S., Masfaraud J.F., Bigorgne E., Nahmani J., Chaurand P., Botta C., et al. Environmental impact of sunscreen nano materials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ. Pollut. 2011; 159(10): 2515-22. https://doi.org/10.1016/j.envpol.2011.06.020

31. Gladkova M.M., Terekhova V.A. Phytotoxicity of nano-TiO2 and effect of humus preparation. In: SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting. Berlin; 2012: 269-70. Available at: http://berlin.setac.eu/embed/Berlin/Abstractbook2_Part1.pdf

32. Wang Z., Zhao J., Liu X., Feng W., White J.C., Xing B., et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 2012; 46(8): 4434-41. https://doi.org/10.1021/es204212z

33. Kim S., Lee S., Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air. Soil Pollut. 2012; 223: 2799-806. https://doi.org/10.1007/s11270-011-1067-3

34. Wu S.G., Huang L., Head J., Chen D.R., Kong I.C., Tang Y.J. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J. Petrol. Environ. Biotechnol. 2012; 3(4): 126. https://doi.org/10.4172/2157-7463.1000126

35. Короткова А.М., Кван О.В., Быкова Л.А., Кудрявцева О.С., Виденеева Т.С., Вишняков А.И. Сравнительный анализ морфо-физиологических особенностей проростков Triticum vulgare после воздействия наночастиц металлов. Вестник Воронежского государственного университета инженерных технологий. 2018; 80(3): 190-5. https://doi.org/10.20914/2310-1202-2018-3-190-195

36. Manceau A., Nagy K.L., Marcus M.A., Lanson M., Geoffroy N., Jacquet T., et al. Formation of metallic copper nanoparticles at the soil-root interface. Environ. Sci. Technol. 2008; 42(5): 1766-72. https://doi.org/10.1021/es072017o

37. Parada J., Rubilar O., Fernández-Baldo M.A., Bertolino F.A., Durán N., Seabra A.B. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Crit. Rev. Biotechnol. 2019; 39(2): 157-72. https://doi.org/10.1080/07388551.2018.1523865

38. Shrestha B., Acosta-Martinez V., Cox S.B., Green M.J., Li S., Cañas-Carrell J.E. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functioning. J. Hazard. Mater. 2013; 261: 188-97. https://doi.org/10.1016/j.jhazmat.2013.07.031

39. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4

40. Gajjar P., Pettee B., Britt D.W., Huang W., Johnson W.P., Anderson A.J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 2009; 3: 9. https://doi.org/10.1186/1754-1611-3-9

41. Dimkpa C., Mclean J., Anderson A. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology. 2012; 6(6): 635-42. https://doi.org/10.3109/17435390.2011.598246

42. Harris Z., Ahmad I. Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int. J. Life Sci. Scienti. Res. 2017; 3(3): 1020-30. https://doi.org/10.21276/ijlssr.2017.3.3.10

43. Ge Y., Schimel J.P., Holden P.A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 2011; 45(4): 1659-64. https://doi.org/10.1021/es103040t

44. Sirelkhatim А., Shahrom M., Azman S., Noor H.M.K., Chuo A.L., Siti K.M.B., et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro. Nano. Lett. 2015; 7(3): 219-42. https://doi.org/10.1007/s40820-015-0040-x

45. Ge Y., Priester J.H., Van De Werfhorst L.C., Schimel J.P., Holden P.A. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 2013; 47(24): 14411-7. https://doi.org/10.1021/es403385c

46. Ben-Moshe T., Frenk S., Dror I., Minz D., Berkowitz B. Effects of metal oxide nanoparticles on soil properties. Chemosphere. 2013; 90(2): 640-6. https://doi.org/10.1016/j.chemosphere.2012.09.018

47. Frenk S., Ben-Moshe T., Dror I., Berkowitz B., Minz D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One. 2013; 8(12): e84441. https://doi.org/10.1371/journal.pone.0084441

48. Du W.C., Sun Y.Y., Ji R., Zhu J.G., Wu J.C., Guo H.Y. TiO2 and ZnO Nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 2011; 13(4): 822-8. https://doi.org/10.1039/c0em00611d

49. Simonin M., Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ. Sci. Pollut. Res. Int. 2015; 22(18): 13710-23. https://doi.org/10.1007/s11356-015-4171-x


Рецензия

Для цитирования:


Соседова Л.М., Новиков М.А., Титов Е.А. Воздействие наночастиц металлов на почвенный биоценоз (обзор литературы). Гигиена и санитария. 2020;99(10):1061-1066. https://doi.org/10.47470/0016-9900-2020-99-10-1061-1066

For citation:


Sosedova L.M., Novikov M.A., Titov E.A. Impact of metal nanoparticles on the ecology of soil biocenosis (literature review). Hygiene and Sanitation. 2020;99(10):1061-1066. (In Russ.) https://doi.org/10.47470/0016-9900-2020-99-10-1061-1066

Просмотров: 574


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)