Воздействие наночастиц металлов на водный биоценоз (обзор литературы)
https://doi.org/10.47470/0016-9900-2021-100-1-30-35
Аннотация
Ключевые слова
Об авторах
Лариса Михайловна СоседоваРоссия
Доктор мед. наук, профессор, зав. лаб. биомоделирования и трансляционной медицины ФГБНУ ВСИМЭИ, 665827, Ангарск.
e-mail: sosedlar@mail.ru
Е. А. Титов
Россия
М. А. Новиков
Россия
И. А. Шурыгина
Россия
М. Г. Шурыгин
Россия
Список литературы
1. Thomas C.R., George S., Horst A.M., Ji Z., Miller R.J., Peralta-Videa J.R., et al. Nanomaterials in the environment: From materials to high-throughput screening to organisms. ACS Nano. 2011; 5(1): 13-20. https://doi.org/10.1021/nn1034857
2. Holden P.A., Nisbet R.M., Lenihan H.S., Miller R.J., Cherr G.N., Schimel J.P., et al. Ecological nanotoxicology: Integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc. Chem. Res. 2012; 46(3): 813-22. https://doi.org/10.1021/ar300069t
3. Kahru A., Savolainen K. Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology. 2010; 269(2-3): 89-91. https://doi.org/10.1016/j.tox.2010.02.012
4. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miaoet J., et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008; 17(5): 372-86. https://doi.org/10.1007/s10646-008-0214-0
5. Wiesner M.R., Lowry G.V., Alvarez P., Dionysiou D., Biswas P. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006; 40(14): 4336-45. https://doi.org/10.1021/es062726m
6. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4
7. Clément L., Hurel C., Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. Chemosphere. 2013; 90(3): 1083-90. https://doi.org/10.1016/j.chemosphere.2012.09.013
8. Damoiseaux R., George S., Li M., Pokhrel S., Ji Z., France B., et al. No time to lose - high throughput screening to assess nanomaterial safety. Nanoscale. 2011; 3(4): 1345-60. https://doi.org/10.1039/c0nr00618a
9. Nel A., Xia T., Meng H., Wang X., Lin S., Ji Z., et al. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2012; 46(3): 607-21. https://doi.org/10.1021/ar300022h
10. Cupi D., Hartmann N.B., Baun A. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicol. Environ. Saf. 2016; 127: 144-52. https://doi.org/10.1016/j.ecoenv.2015.12.028
11. Gonzalez-Sanchez M.I., González-Macia L., Pérez-Prior M.T., Valero E., Hancock J., Killard A.J. Electrochemical detection of extracellular hydrogen peroxide in Arabidopsis thaliana: a real-time marker of oxidative stress. Plant Cell Environ. 2013; 36(4): 869-78. https://doi.org/10.1111/pce.12023
12. Puerari R.C., da Costa C.H., Vicentina D.S., Fuzinatto C.F., Melegari S.P., Schmid É.C., et al. Synthesis, characterization and toxicological evaluation of Cr2O3 nanoparticles using Daphnia magna and Aliivibrio fischeri. Ecotoxicol. Environ. Saf. 2016; 128: 36-43. https://doi.org/10.1016/j.ecoenv.2016.02.011
13. Kennedy A.J., Coleman J.G., Diamond S.A., Melby N.L., Bednar J., Harmon A., et al. Assessing nanomaterial exposures in aquatic ecotoxicological testing: Framework and case studies based on dispersion and dissolution. Nanotoxicology. 2017; 11(4): 546-57. https://doi.org/10.1080/17435390.2017.1317863
14. Tomacheski D., Pitto M., Simõe D.N., Ferreira R.V. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms. J. Environ. Sci. (China). 2017; 56: 230-9. https://doi.org/10.1016/j.jes.2016.07.018
15. Salieri B., Righi S., Pasteris A., Olsen S.I. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle. Sci. Total Environ. 2015; 505: 494-502. https://doi.org/10.1016/j.scitotenv.2014.09.107
16. Maness P., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A., et al. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 2009; 65(9): 4094-8. https://doi.org/10.1128/aem.65.9.4094-4098.1999
17. Yang H., Mei S., Zhao L., Zhang Y. Effects of ultraviolet irradiation on the antibacterial activity of TiO2 nanotubes. Nanosci. Nanotechnol. Lett. 2016; 8(6): 498-504. https://doi.org/10.1166/nnl.2016.2135
18. Zhang W., Li Y., Niu J., Chen Y. Photogeneration of reactive oxygen species on uncoatedsilver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. 2013; 29(15): 4647-51. https://doi.org/10.1021/la400500t
19. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4
20. Santschi C., Von Moos N., Koman V.B., Slaveykova V., Bowen P., Martin O.J.F. Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. J. Nanobiotechnol. 2017; 15(1): 19. https://doi.org/10.1186/s12951-017-0253-x
21. Wang D., Zhao L.X., Ma H.Y., Zhang H., Guo L.H.H. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ. Sci. Technol. 2017; 51(17): 10137-45. https://doi.org/10.1021/acs.est.7b00473
22. González-Sánchez M.I., González-Macia L., Pérez-Prior M.T., Valero E., Hancock J., Killard A.J. Electrochemical detection of extracellular hydrogen peroxide in Arabidopsis thaliana: A real-time marker of oxidative stress. Plant Cell Environ. 2013; 36(4): 869-78. https://doi.org/10.1111/pce.12023
23. Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113(7): 823-39. https://doi.org/10.1289/ehp.7339
24. Cao H., Meng F., Liu X. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles. J. Vac. Sci. Technol. 2016; 34(04): 102. https://doi.org/10.1116/1.4947077
25. Mi F.L., Wu Y.B., Shyu S.S., Schoung J.Y., Huang Y.B., Tsai Y.H., et al. Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J. Biomed. Mater. Res. 2002; 59(3): 438-49. https://doi.org/10.1002/jbm.1260
26. Mosselhy D.A., El-Aziz M.A., Hanna M., Ahmed M.A., Husien M.M., Feng Q.L. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate. J. Nanopart. Res. 2015; 17: 473. https://doi.org/10.1007/s11051-015-3279-8
27. Liu X., Gan K., Liu H., Song X., Chen T., Liu C. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent. Mater. 2017; 33(9): e348-e360. https://doi.org/10.1016/j.dental.2017.06.014
28. Sanchís J., Olmos M., Vincent P., Farré M., Barceló D. New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ. Sci. Technol. 2016; 50(2): 961-9. https://doi.org/10.1021/acs.est.5b03966
29. Tong T., Wilke C.M., Wu J., Binh C.T., Kelly J.J., Gaillard J.F., et al. Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ. Sci. Technol. 2015; 49(13): 8113-23. https://doi.org/10.1021/acs.est.5b02148
30. Ye N., Wang Z., Fang H., Wang S., Zhang F. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. J. Environ. Sci. Health. 2017; 52(6): 555-60. https://doi.org/10.1080/10934529.2017.1284434
31. Shang E., Li Y., Niu J., Guo H., Zhou Y., Liu H., et al. Effect of aqueous media on the copper-ion-mediated phototoxicity of CuO nanoparticles toward green fluorescent protein-expressing Escherichia coli. Ecotoxicol. Environ. Saf. 2015; 122: 238-44. https://doi.org/10.1016/j.ecoenv.2015.08.002
32. Zhou C., Vitiello V., Pellegrini D., Wu C., Morelli E., Buttino I. Toxicological effects of CdSe/ZnS quantum dots on marine planktonic organisms. Ecotoxicol. Environ. Saf. 2016; 123: 26-31. https://doi.org/10.1016/j.ecoenv.2015.09.020
33. Pakrashi S., Dalai S., Sabat D., Singh S., Chandrasekaran N., Mukherjee A. Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem. Res. Toxicol. 2011; 24: 1899-04.
34. Kumar A., Pandey A.K., Singh S.S., Shanker R., Dhawan A. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 2011; 51(10): 1872-81. https://doi.org/10.1016/j.freeradbiomed.2011.08.025
35. Tong T., Binh C.T.T., Kelly J.J., Gaillard J.F., Gray K.A. Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: Effects of environmental factors. Water Res. 2013; 47(7): 2352-62. https://doi.org/10.1016/j.watres.2013.02.008
36. Jin X., Li M., Wang J., Marambio-Jones C., Peng F., Huang X., et al. High-throughput screening of silver nanopartice stability and bacterial inactivation in aquatic media; Influence of specific ions. Environ. Sci. Technol. 2010; 44(19): 7321-8. https://doi.org/10.1021/es100854g
37. Binh C.T.T., Tong T., Gaillard J.F., Gray K.A., Kelly J.J. Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO2. Environ. Toxicol. Chem. 2014; 33(2): 317-27. https://doi.org/10.1002/etc.2442
38. Binh C.T.T., Tong T., Gaillard J.F., Gray K.A., Kelly J.J. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing. PLoS One. 2014; 9(8): e106280. https://doi.org/10.1371/journal.pone.0106280
39. von Moos N., Maillard L., Slaveykova V.I. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat. Toxicol. 2015; 161: 267-75. https://doi.org/10.1016/j.aquatox.2015.02.010
40. Aravantinou A.F., Tsarpali V., Dailianis S., Manariotis I.D. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol. Environ. Saf. 2015; 114: 109-16. https://doi.org/10.1016/j.ecoenv.2015.01.016
41. Manier N., Bado-Nilles A., Delalain P., Aguerre-Chariol O., Pandard P. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 2013; 180: 63-70. https://doi.org/10.1016/j.envpol.2013.04.040
42. Polonini H.C., Brandão H.M., Raposo N.R., Brandão M.A.F., Mouton L., Couté A., et al. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Ecotoxicology. 2015; 24(4): 938-48. https://doi.org/10.1007/s10646-015-1436-6
43. Morellia E., Gabellieria E., Bonominia A., Tognottia D., Grassib G., Corsi I. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 2018; 148: 184-93. https://doi.org/10.1016/j.ecoenv.2017.10.024
44. Callegaro S., Minetto D., Pojana G., Bilanicová D., Libralato G., Ghirardini A.V. Effects of alginate on stability and ecotoxicity of nano-TiO2 in artificial seawater. Ecotoxicol. Environ. Saf. 2015; 117: 107-14. https://doi.org/10.1016/j.ecoenv.2015.03.030
45. Shirazi A., Shariati M., Keshavarz A., Ramezanpour Z. Toxic effect of aluminium oxide nanoparticles on green micro-algae Dunaliella salina. Int. J. Environ. Res. 2015; 9(2): 585-94.
46. Gao M., Zhang Z., Lv M., Song W., Lv Y. Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Ecotoxicol. Environ. Saf. 2018; 148: 261-8. https://doi.org/10.1016/j.ecoenv.2017.10.038
47. Semerád J., Cajthaml T. Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications. Appl. Microbiol. Biotechnol. 2016; 100(23): 9809-19. https://doi.org/10.1007/s00253-016-7901-1
48. Cullen L.G., Tilston E.L., Mitchell G.R., Collins C.D., Shaw L.J. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere. 2011; 82(11): 1675-82. https://doi.org/10.1016/ j.2010.11.009
49. Tesh S.J., Scott T.B. Nano-composites for water remediation: a review. Adv. Mater. 2014; 26(35): 6056-68. https://doi.org/10.1002/adma.201401376
50. Barrera-Díaz C.E., Lugo-Lugo V., Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard Mater. 2012; 223-224: 1-12. https://doi.org/10.1016/j.jhazmat.2012.04.054
51. Pádrová K., Čejková A., Cajthaml T., Kolouchová I., Vítová M., Sigler K., et al. Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiol. (Praha) 2016; 61(4): 329-35. https://doi.org/10.1007/s12223-015-0442-7
52. Jang M.H., Lim M., Hwang Y.S. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ. Health. Toxicol. 2014; 29: e2014022. https://doi.org/10.5620/eht.e2014022
53. Mitrano D.M., Motellier S., Clavaguera S., Nowack B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 2015; 77: 132-47. https://doi.org/10.1016/j.envint.2015.01.013
54. Darwish A.D. Fullerenes. Ann. Rep. Sect. A. Inorg. Chem. 2013; 109: 436-52.
55. Burakov A., Romantsova I., Kucherova A., Tkachev A. Removal of heavy-metal ions from aqueous solutions using activated carbons: effect of adsorbent surface modification with carbon nanotubes. Adsorpt. Sci. Technol. 2014; 32(9): 737-47. https://doi.org/10.1260/0263-6174.32.9.737
56. Melezhyk A.V., Kotov V.A., Tkachev A.G. Optical properties and aggregation of graphene nanoplatelets. J. Nanosci. Nanotechnol. 2016; 16(1): 1067-75. https://doi.org/10.1166/jnn.2016.10496
57. Nogueira V., Lopes I., Rocha-Santos T.A.P., Rasteiro M.G., Abrantes N., Gonçalves F., et al. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environ. Sci. Pollut. Res. 2015; 22(17): 13212-24. https://doi.org/10.1007/s11356-015-4581-9
58. Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E, Agarwal S., Tkachev A.G., et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018; 148: 702-12. https://doi.org/10.1016/j.ecoenv.2017.11.034
59. Nogueira V., Lopes I., Rocha-Santos T., Santos A.L., Rasteiro G.M., Antunes F., et al. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci. Total Environ. 2012; 424: 344-50. https://doi.org/10.1016/j.scitotenv.2012.02.041
Рецензия
Для цитирования:
Соседова Л.М., Титов Е.А., Новиков М.А., Шурыгина И.А., Шурыгин М.Г. Воздействие наночастиц металлов на водный биоценоз (обзор литературы). Гигиена и санитария. 2021;100(1):30-35. https://doi.org/10.47470/0016-9900-2021-100-1-30-35
For citation:
Sosedova L.M., Titov E.A., Novikov M.A., Shurygina I.A., Shurygin M.G. Impact of metal nanoparticles on the ecology of aquatic biocenosis and microbial communities (Review). Hygiene and Sanitation. 2021;100(1):30-35. (In Russ.) https://doi.org/10.47470/0016-9900-2021-100-1-30-35