Preview

Гигиена и санитария

Расширенный поиск

Генотоксические свойства фторид-иона (обзор литературы)

https://doi.org/10.47470/0016-9900-2020-99-3-253-258

Полный текст:

Аннотация

Введение. Избыточное содержание в среде обитания человека и профессиональный контакт с фтором являются актуальной и недооценённой проблемой. Фторид-ион способен вытеснять гидроксильную группу из гидроксиапатитов кальция, формируя устойчивые кристаллы смешанной формы апатита, индуцируя патологию костной ткани – флюороз. Несмотря на большую распространённость флюороза, имеются лишь единичные работы, обсуждающие способность фторид-иона индуцировать повышение уровня генотоксических эффектов. В то же время подобные исследования актуальны в связи с прямой корреляцией между генетической нестабильностью и риском канцерогенеза.

Материал и методы. Был проведён поиск литературы по следующим запросам: «фтор, фториды, фторид-ион, повреждение ДНК, генетические повреждения, генотоксичность». Поиск проведён по базам данных PubMed, MEDLINE, Embase и Google Scholar для различных статей (все публикации до июня 2018 г.). Все публикации были проанализированы и включены в этот обзор.

В обзоре рассматриваются результаты исследований, направленных на изучение способности фтора индуцировать повреждения ДНК, публиковавшиеся с 50-х годов ХХ века по настоящее время. Рассматривается совокупность данных о генотоксических и в том числе мутагенных свойствах фтора, наблюдаемых в результате in vitro и in vivo исследований. Резюмируется, что при концентрациях в питьевой воде более 1 мМ фторид-ион обладает способностью индуцировать повреждения ДНК и увеличивать частоту кластогенных эффектов у человека и больших обезьян. В то же время для значимого увеличения генотоксических эффектов у грызунов требуются большие концентрации фторидов. Описываются основные гипотезы о механизмах генотоксических свойств элемента.

Заключение. С учётом анализа результатов опубликованных работ можно отметить, что фторид-ион, очевидно, обладает рядом генотоксических характеристик и может обладать мутагенными свойствами при хроническом контакте с клеточными объектами. Нераскрытым остаётся вопрос о генотоксических рисках и канцерогенных, которым может подвергаться человек при различном контакте с фтористыми соединениями.

Об авторах

Е. Э. Калюжная
Федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет»
Россия


А. Ю. Просеков
Федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет»
Россия


Валентин Павлович Волобаев
Федеральное государственное бюджетное образовательное учреждение высшего образования «Кемеровский государственный университет»
Россия

Младший научный сотрудник научно-инновационного управления ФГБОУ ВО «Кемеровский государственный университет», 650000, Кемерово.

e-mail: volobaev.vp@gmail.com



Список литературы

1. Pramanik S., Saha D. The genetic influence in fluorosis. Environ Toxicol Pharmacol. 2017; 56: 157-62. https://10.1016/j.etap.2017.09.008

2. Perumal E., Paul V., Govindarajan V., Panneerselvam L. A brief review on experimental fluorosis. Toxicol Lett. 2013; 223 (2): 236-51. https://10.1016/j.toxlet.2013.09.005

3. Campos-Pereira F.D., Lopes-Aguiar L., Renosto F.L. et al. Genotoxic effect and rat hepatocyte death occurred after oxidative stress induction and antioxidant gene downregulation caused by long term fluoride exposure. Chem Biol Interact. 2017; 264: 25-33. https://10.1016/j.cbi.2017.01.005

4. Dutta M., Rajak P., Khatun S., Roy S. Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure. Chemosphere. 2017; 166: 255-266. https://10.1016/j.chemosphere.2016.09.112

5. Sinha S., Ghosh M., Mukherjee A. Evaluation of multi-endpoint assay to detect genotoxicity and oxidative stress in mice exposed to sodium fluoride. Mutat Res. 2013; 751 (1): 59-65. https://10.1016/j.mrgentox.2012.11.006

6. Thangapandiyan S., Miltonprabu S. Epigallocatechin gallate effectively ameliorates fluoride-induced oxidative stress and DNA damage in the liver of rats. Can J Physiol Pharmacol. 2013; 91 (7): 528-37. https://10.1139/cjpp-2012-0347

7. Zhang M., Wang A., Xia T., He P. Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons. Toxicol Lett. 2008; 179 (1): 1-5. https://10.1016/j.toxlet.2008.03.002

8. Podder S., Chattopadhyay A., Bhattacharya S. In vivo suppression by fluoride of chromosome aberrations induced by mitomycin-C in mouse bone marrow cells. Fluoride. 2008; 41 (1): 40-3.

9. He L.F., Chen J.G. DNA damage, apoptosis and cell cycle changes induced by fluoride in rat oral mucosal cells and hepatocytes. World J Gastroenterol. 2006; 12 (7): 1144-8.

10. Leite A.L., Santiago J.F.Jr., Levy F.M. et al. Absence of DNA damage in multiple organs (blood, liver, kidney, thyroid gland and urinary bladder) after acute fluoride exposure in rats. Hum Exp Toxicol. 2007; 26 (5): 435-40.

11. Ribeiro D.A., Salvadori D.M.F., Assis G.F., Marques M.A. Does fluoride cause DNA damage? An in vitro evaluation using rats oral mucosa cells. Braz J Oral Sci. 2003; 2: 268-71.

12. Ribeiro D.A., Alves de Lima P.L., Marques M.E., Salvadori D.M. Lack of DNA damage induced by fluoride on mouse lymphoma and human fibroblast cells by single cell gel (comet) assay. Braz Dent J. 2006; 17 (2): 91-4.

13. Gerdes R.A., Smith J.D., Applegate H.G. The effects of atmospheric hydrogen fluoride upon Drosophila melanogaster. II. Fecundity, hatchability and fertility. Atmos Environ. 1971; 5 (3): 117-22.

14. Vogel E. Strong antimutagenic effects of fluoride on mutation induction by Trenimon and 1-phenyl-3,3-dimethylthriazene in Drosophila melanogaster. Mutation Res. 1973; 20: 339-52.

15. Mendelson D. Lack of effect of sodium fluoride on a maternal repair system in Drosophila oocytes. Mutat Res. 1976; 34 (2): 245-50.

16. Mukherjee R.N., Sobels F.H. The effects of sodium fluoride and iodoacetamide on mutation induction by x-irradiation in mature spermatozoa of Drosophila. Mutat Res. 1968; 6 (2): 217-25.

17. Erciyas K., Sarikaya R. Genotoxic evaluation of sodium fluoride in the Somatic Mutation and Recombination Test (SMART). Food Chem Toxicol. 2009; 47 (11): 2860-2. https://10.1016/j.fct.2009.09.008

18. Srb V., Mracková G., Kubzová E. et al. Genotoxic activity test of sodium fluoride in vitro. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl. 1992; 35 (3): 219-42.

19. Nikiforova VIa. Mechanism of the mutagenic action of fluorine. Tsitol Genet. 1982; 16 (6): 40-2.

20. Martin G.R., Brown K.S., Matheson D.W. et al. Lack of cytogenetic effects in mice or mutations in Salmonella receiving sodium fluoride. Mutation Res. 1979; 66: 159-67.

21. WHO/IPCS Publication, Environmental Health Criteria 51. Guide to short-term tests for detecting mutagenic and carcinogenicchemicals. Geneva; 1985.

22. Kihlman B.A. Experimentally induced chromosome aberrations in plants, 1. The production of chromosome aberrations by cyanide and other heavy metal complexing agents. J Biophys Biochem Cytol. 1957; 3: 363-80.

23. Mohamed A.H., Smith J.D., Applegate H.G. Cytological effects of hydrogen fluoride on tomato chromosomes. Can J Genet Cytol. 1966; 8: 575-6.

24. Mohamed A.H. Cytogenetic Effects Of Hydrogen Fluoride TreatmentIn Tomato Plants. J Air Pollut Control Assoc. 1968; 18: 6: 395-8. https://10.1080/00022470.1968.10469145 https://www.tandfonline.com/doi/pdf/10.1080/00022470.1968.10469145

25. Mohamed A.H. Chromosomal changes in maize induced by hydrogen fluoride gas. Can J Genet Cytol. 1970; 12 (3): 614-20.

26. Hirano S., Ando M. Fluoride mediates apoptosis in osteosarcoma UMR 106 and its cytotoxicity depends on the pH. Arch Toxicol. 1997; 72: 52-8.

27. Das J., Ghosh J., Manna P., Sil P.C. Taurine provides antioxidant defense against NaF-induced cytotoxicity in murine hepatocytes. Pathophysiology. 2008; 15: 181-90. https://10.1016/j.pathophys.2008.06.002

28. Ghosh J., Das J., Manna P., Sil P.C. Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway. Toxicol In Vitro. 2008; 22: 1918-26. https://10.1016/j.tiv.2008.09.010

29. Jia L., Zhang Z., Zhai L., Zhang Y., Sun G. DNA damage induced by fluoride in rat kidney cells. Fluoride. 2008; 41: 297-300.

30. Aardema M.J., Gibson D.P., LeBoeuf R.A. Sodium fluoride-induced chromosome aberrations in different stages of the cell cycle: a proposed mechanism. Mutat Res. 1989; 223 (2): 191-203.

31. Tsutsui T., Suzuki N., Ohmori M. Exchanges, and unscheduled DNA synthesis in cultured Syrian transformation, chromosome aberrations, sister chromatid sodium fluoride-induced morphological and neoplastic hamster embryo cells. Cancer Res. 1984; 44 (3): 938-41.

32. He W., A. Liu, H. Bao, Y. Wang, W. Cao. Effect of sodium fluoride and fluoroacetamide on sister chromatid exchanges and chromosomal aberrations in cultured Red Muntjac (Muntjacus muntjak) cells. Acta Scient Circumst. 1983; 3: 94-100.

33. Khalil A.M. Chromosome aberrations in cultured in bone marrow cells treated with inorganic fluorides. Mutat Research. 1995; 343: 67-74.

34. Lee T.C., Jan K.Y., Wang T.C. Induction of sister chromatid exchanges by arsenite in primary rat tracheal epithelial cells. Bull Inst Zool Acad Sinica. 1988; 27: 105-10.

35. Kishi K., Ishidab T. Clastogenic activity of sodium fluoride in great ape cells. Mutat Res. 1993; 301 (3): 183-8.

36. Tiwari H., Rao M.V. Curcumin supplementation protects from genotoxic effects of arsenic and fluoride. Food Chem Toxicol. 2010; 48: 1234-8. https://10.1016/j.fct.2010.02.015

37. Pant H.H., Rao M.V. Evaluation of in vitro anti-genotoxic potential of melatonin against arsenic and fluoride in human blood cultures. Ecotoxicol Environ Saf. 2010; 73 (6): 1333-7. https://10.1016/j.ecoenv.2010.05.004

38. Jachimczak D., Skotarczak B. The effect of fluoride and lead ions on the chromosomes of human leukocytes in vitro. Genet Polon. 1978; 19: 353-7.

39. Kleinsasser N.H., Weissacher H., Wallner B.C. et al. Cytotoxicity and genotoxicity of fluorides in human mucosa and lymphocytes. Laryngorhinootologie. 2001; 80 (4): 187-90.

40. Scott D. Cytogenetic effects of sodium fluoride in cultured human fibroblasts. In: Proceedings of the 4th International Conference on Environmental Mutagens. Stockholm; 1985.

41. Hayashi N., Tsutsui T. Cell cycle dependence of cytotoxicity and clastogenicity induced by treatment of synchronized human diploid fibroblasts with sodium fluoride. Mutat Res. 1993; 290: 293-302.

42. Anuradha C.D., Kanno S., Hirano S. Fluoride induces apoptosis by caspase-3 activation in human leukemia HL-60 cells. Arch Toxicol. 2000; 74: 226-30.

43. Wang A., Xia T., Chu Q. et al. Effects of fluoride on lipid peroxidation, DNA damage and apoptosis in human embryo hepatocytes. Biomed Environ Sci. 2004; 17: 217-22.

44. Jagiello G., Lin J.S. Sodium fluoride as potential mutagen in mammalian eggs. Arch Environ Health. 1974; 29: 230-5.

45. Thomson E.J., Kilanowski F.M., Perry P.E. The effect of fluoride on chromosome aberration and sister chromatid exchange frequencies in cultured human lymphocytes. Mutat Res. 1985; 144: 89-92.

46. Mohamed A.H., Chandler M.E. Cytological effects of sodium fluoride on mice. In: Proceedings of the conference earings before subcommittee on the committee on Government operation, House of Representatives, 95th Congress, 1st session. Washington; 1977: 42-60.

47. Zeiger E., Gulati D.K., Kaur P., Mohamed A.H., Revazova J., Deaton T.G. Cytogenetic studies of sodium fluoride in mice. Mutagenesis. 1994; 9 (5): 467-71.

48. Podder S., Chattopadhyay A., Bhattacharya S. Reduction in fluoride-induced genotoxicity in mouse bone marrow cells after substituting high fluoridecontaining water with safe drinking water. J Appl Toxicol. 2011; 31: 703-5.

49. Thangapandiyan S., Miltonprabu S., Can J. Epigallocatechin gallate effectively ameliorates fluoride-induced oxidative stress and DNA damage in the liver of rats. Physiol Pharmacol. 2013; 91 (7): 528-37. https://10.1139/cjpp-2012-0347

50. Song G.H., Huang F.B., Gao J.P. et al. Effects of fluoride on DNA damage and caspase-mediated apoptosis in the liver of rats. Biol Trace Elem Res. 2015; 166 (2): 173-82. https://10.1007/s12011-015-0265-z

51. Song G.H., Gao J.P., Wang C.F. et al. Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage. J Physiol Biochem. 2014; 70 (3): 857-68. https://10.1007/s13105-014-0354-z

52. Ribeiro D.A., Marques M.E., de Assis G.F. et al. No relationship between subchronic fluoride intake and DNA damage in Wistar rats. Caries Res. 2004; 38 (6): 576-9. https://10.1159/000080590

53. Leite Ade L., Santiago J.F.Jr., Levy F.M. et al. Absence of DNA damage in multiple organs (blood, liver, kidney, thyroid gland and urinary bladder) after acute fluoride exposure in rats. Hum Exp Toxicol. 2007; 26 (5): 435-40. https://10.1177/0960327107076288

54. Skare J.A., Wong T.K., Schrotel K.R. Lack of genotoxic activity of sodium fluoride in an in vitro DNA repair assay and an in vivo DNA damage assay. Environ Mutagen. 1985; 7 (3): 72. https://10.1016/0165-1218(86)90085-6

55. Mukherjee R.N., Sobels F.H. The effects of sodium fluoride and iodoacetamide on mutation induction by x-irradiation in mature spermatozoa of Drosophila. Mutat Res. 1968; 6 (2): 217-25.

56. Luchnic N.V., Poryadkova N.A., Izmailova N.N. The influence of inhibitors of cellular respiration on the production of structural mutations in human lymphocytes irradiated during different stages of the mitotic cycle. Genetika. 1985; 21: 252-61.

57. Obe G., Slacik-Erben R. Suppressive activity by fluoride on the induction of chromosome aberrations in human cells with alkylating agents in vitro. Mutat Res. 1973; 19: 369-71.

58. Slacik-Erben R., Obe G. The effect of sodium fluoride on DNA synthesis, mitotic indices and chromosomal aberrations in human leukocytes treated with Trenimon in vitro. Mutat Res. 1976; 37: 253-66.

59. Jackson RD., Kelly SA., Noblitt T.W. et al. Lack of Effect of Long-Term Fluoride Ingestion on Blood Chemistry and Frequency of Sister Chromatid Exchange in Human Lymphocytes. Environ Mol Mutagen. 1997; 29: 265-71.

60. Li Y., Liang C.K., Katz B.P. et al. Long-term exposure to fluoride in drinking water and sister chromatid exchange frequency in human blood lymphocytes. J Dent Res. 1995; 74 (8): 1468-74.

61. van Asten P., Darroudi F., Natarajan A.T. et al. Cytogenetic effects on lymphocytes in osteoporotic patients on long-term fluoride therapy. Pharm World Sci. 1998; 20 (5): 214-8.

62. Jackson R., Kelly S., Noblitt T. et al. The effect of fluoride therapy on blood chemistry parameters in osteoporotic females. Bone Miner. 1994; 27: 13-23.

63. Jothiramajayam M., Sinha S., Ghosh M. et al. Sodium fluoride promotes apoptosis by generation of reactive oxygen species in human lymphocytes. J Toxicol Environ Health A. 2014; 77 (21): 1269-80. https://10.1080/15287394.2014.928658

64. Suzuki M., Bandoski C., Bartlett J.D. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med. 2015; 89: 369-78. https://10.1016/j.freeradbiomed.2015.08.015

65. Liu L., Zhang Y., Gu H., Zhang K., Ma L. Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo. Biol Trace Elem Res. 2015; 164 (1): 64-71. https://10.1007/s12011-014-0192-4

66. Deng H., Kuang P., Cui H. et al. Sodium fluoride (NaF) induces the splenic apoptosis via endoplasmic reticulum (ER) stress pathway in vivo and in vitro. Aging (Albany NY). 2016; 8 (12): 3552-67. https://10.18632/aging.101150

67. Zhou B.H., Zhao J., Liu J. et al. Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere. 2015; 139: 504-11. https://10.1016/j.chemosphere.2015.08.030

68. Nguyen Ngoc T.D., Son Y.O., Lim S.S., Shi X., Kim J.G., Heo J.S. et al. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways. Toxicol Appl Pharmacol. 2012; 259 (3): 329-37.

69. Karube H., Nishitai G., Inageda K., Kurosu H., Matsuoka M. NaF activates MAPKs and induces apoptosis in odontoblast-like cells. J Dent Res. 2009 88 (5): 461-5.

70. Ribeiro D.A., Yujra V.Q., da Silva V.H.P., Claudio S.R., Estadella D., de Barros Viana M. et al. Putative mechanisms of genotoxicity induced by fluoride: a comprehensive review. Environ Sci Pollut Res Int. 2017; 24 (18): 15254-9. https://10.1007/s11356-017-9105-3


Для цитирования:


Калюжная Е.Э., Просеков А.Ю., Волобаев В.П. Генотоксические свойства фторид-иона (обзор литературы). Гигиена и санитария. 2020;99(3):253-258. https://doi.org/10.47470/0016-9900-2020-99-3-253-258

For citation:


Kalyuzhnaya E.E., Prosekov A.Yu., Volobaev V.P. Genotoxic properties of fluorines (review). Hygiene and Sanitation. 2020;99(3):253-258. (In Russ.) https://doi.org/10.47470/0016-9900-2020-99-3-253-258

Просмотров: 43


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)