Биомаркеры хронического профессионального стресса (обзор литературы)
https://doi.org/10.47470/0016-9900-2022-101-6-649-654
Аннотация
В работе обобщены результаты современных исследований взаимосвязи хронического профессионального стресса с широким спектром биомаркеров гомеостаза и функционального состояния организма. С позиций диагностической и прогностической значимости нейроэндокринных, нейрофизиологических, иммунных и метаболических биомаркеров хронического профессионального стресса были проанализированы 62 публикации, в наибольшей степени отвечающие цели работы, выбранные из 187 источников научной информации баз данных КиберЛенинка, PubMed и Google scholar. Рассмотрены ключевые гормоны и интермедиаты, лимитирующие баланс и направленность реакций симпатоадреналовой системы, гипоталамо-гипофизарно-адреналовой, гипоталамо-гипофизарно-гонадной и гипоталамо-гипофизарно-тиреоидной осей, а также ряд наиболее значимых показателей иммунной системы, характеризующих соотношение про- и противовоспалительных процессов, возникающих в организме при хроническом воздействии психосоциальных факторов рабочей среды. Определены основные методические проблемы (выбор объекта исследований, отсутствие унифицированных методов, вмешивающиеся факторы), затрудняющие интерпретацию результатов тестирования биомаркеров при хроническом стрессе и внедрение нейроэндокринных и иммунных показателей в клиническую практику. Показано, что полибиомаркерные исследования, основанные на концепции аллостерической нагрузки, открывают новые возможности для превентивного и перспективного управления стрессом на рабочем месте.
Участие авторов:
Безрукова Г.А. — концепция и дизайн исследования, сбор материала и написание текста;
Микеров А.Н. — редактирование.
Все соавторы — утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.
Финансирование. Исследование не имело спонсорской поддержки.
Поступила: 11.04.2022 / Принята к печати: 08.06.2022 / Опубликована: 26.06.2022
Ключевые слова
Об авторах
Галина Александровна БезруковаРоссия
Доктор мед. наук, доцент, гл. науч. сотр. отд. медицины труда Саратовского МНЦ гигиены ФБУН «ФНЦ медико-профилактических технологий управления рисками здоровью населения», 410022, Саратов, Россия.
e-mail: bezrukovagala@yandex.ru
А. Н. Микеров
Россия
Список литературы
1. Aronsson G., Theorell T., Grape T., Hammarström A., Hogstedt C., Marteinsdottir I., et al. A systematic review including meta-analysis of work environment and burnout symptoms. BMC Public Health. 2017; 17(1): 264. https://doi.org/10.1186/s12889-017-4153-7
2. Siegrist J., Li J. Work stress and altered biomarkers: a synthesis of findings based on the effort-reward imbalance model.Int. J. Environ Res. Public Health. 2017; 14(11): 1373. https://doi.org/10.3390/ijerph14111373
3. Salvagioni D.A.J., Melanda F.N., Mesas A.E., González A.D., Gabani F.L., Andrade S.M. Physical, psychological and occupational consequences of job burnout: A systematic review of prospective studies. PLoS One. 2017; 12(10): e0185781. https://doi.org/10.1371/journal.pone.0185781
4. Fioranelli M., Bottaccioli A.G., Bottaccioli F., Bianchi M., Rovesti M., Roccia M.G. Stress and inflammation in coronary artery disease: a review psychoneuroendocrineimmunology-based. Front. Immunol. 2018; 9: 2031. https://doi.org/10.3389/fimmu.2018.02031
5. Nyberg S.T., Fransson E.I., Heikkilä K., Ahola K., Alfredsson L., Bjorner J.B., et al. Job strain as a risk factor for type 2 diabetes: a pooled analysis of 124,808 men and women. Diabetes Care. 2014; 37(8): 2268-75. https://doi.org/10.2337/dc13-2936
6. Aghilinejad M., Zargham Sadeghi A.A., Sarebanha S., Bahrami-Ahmadi A. Role of occupational stress and burnout in prevalence of musculoskeletal disorders among embassy personnel of foreign countries in Iran. Iran Red. Crescent. Med. J. 2014; 16(5): e9066. https://doi.org/10.5812/ircmj.9066
7. Huerta-Franco M.R., Vargas-Luna M., Tienda P., Delgadillo-Holtfort I., Balleza-Ordaz M., Flores-Hernandez C. Effects of occupational stress on the gastrointestinal tract. World J. Gastrointest. Pathophysiol. 2013; 4(4): 108-18. https://doi.org/10.4291/wjgp.v4.i4.108
8. Shin K.J., Lee Y.J., Yang Y.R., Park S., Suh P.G., Follo M.Y., et al. Molecular mechanisms underlying psychological stress and cancer. Curr. Pharm. Des. 2016; 22(16): 2389-402. https://doi.org/10.2174/1381612822666160226144025
9. Coronado J.I.C., Chandola T., Steptoe A. Allostatic load and effort-reward imbalance: associations over the working-career.Int. J. Environ. Res. Public Health. 2018; 15(2): 191. https://doi.org/10.3390/ijerph15020191
10. Jonsdottir I.H., Sjörs Dahlman A. Mechanisms in endocrinology: Endocrine and immunological aspects of burnout: a narrative review. Eur. J. Endocrinol. 2019; 180(3): R147-58. https://doi.org/10.1530/EJE-18-0741
11. Juster R.P., McEwen B.S., Lupien S.J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 2010; 35(1): 2-16. https://doi.org/10.1016/j.neubiorev.2009.10.002
12. Nater U.M., Skoluda N., Strahler J. Biomarkers of stress in behavioural medicine. Curr. Opin. Psychiatry. 2013; 26(5): 440-5. https://doi.org/10.1097/YCO.0b013e328363b4ed
13. Petrowski K., Wintermann G.B., Schaarschmidt M., Bornstein S.R., Kirschbaum C. Blunted salivary and plasma cortisol response in patients with panic disorder under psychosocial stress.Int. J. Psychophysiol. 2013; 88(1): 35-9. https://doi.org/10.1016/j.ijpsycho.2013.01.002
14. Eddy P., Wertheim E.H., Hale M.W., Wright B.J. A systematic review and meta-analysis of the effort-reward imbalance model of workplace stress and hypothalamic-pituitary-adrenal axis measures of stress. Psychosom. Med. 2018; 80(1): 103-13. https://doi.org/10.1097/PSY.0000000000000505
15. Tortosa-Martínez J., Manchado C., Cortell-Tormo J.M., Chulvi-Medrano I. Exercise, the diurnal cycle of cortisol and cognitive impairment in older adults. Neurobiol. Stress. 2018; 9: 40-7. https://doi.org/10.1016/j.ynstr.2018.08.004
16. Sroykham W., Wongsawat Y. Effects of brain activity, morning salivary cortisol, and emotion regulation on cognitive impairment in elderly people. Medicine (Baltimore). 2019; 98(26): e16114. https://doi.org/10.1097/MD.0000000000016114
17. Tsui A., Richards M., Singh-Manoux A., Udeh-Momoh C., Davis D. Longitudinal associations between diurnal cortisol variation and later-life cognitive impairment. Neurology. 2020; 94(2): e133-41. https://doi.org/10.1212/WNL.0000000000008729
18. D’Anna-Hernandez K.L., Ross R.G., Natvig C.L., Laudenslager M.L. Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: comparison to salivary cortisol. Physiol. Behav. 2011; 104(2): 348-53. https://doi.org/10.1016/j.physbeh.2011.02.041
19. Dettenborn L., Tietze A., Kirschbaum C., Stalder T. The assessment of cortisol in human hair: associations with sociodemographic variables and potential confounders. Stress. 2012; 15(6): 578-88. https://doi.org/10.3109/10253890.2012.654479
20. El Mlili N., Ahabrach H., Cauli O. Hair cortisol concentration as a biomarker of sleep quality and related disorders. Life (Basel). 2021; 11(2): 81. https://doi.org/10.3390/life11020081
21. Eddy P., Wertheim E.H., Hale M.W., Wright B.J. A systematic review and meta-analysis of the effort-reward imbalance model of workplace stress and hypothalamic-pituitary-adrenal axis measures of stress. Psychosom. Med. 2018; 80(1): 103-13. https://doi.org/10.1097/psy.0000000000000505
22. Hirokawa K., Ohira T., Nagao M., Nagayoshi M., Kajiura M., Imano H., et al. Associations between occupational status, support at work, and salivary cortisol levels.Int. J. Behav. Med. 2021. https://doi.org/10.1007/s12529-021-10020-2
23. Stalder T., Steudte-Schmiedgen S., Alexander N., Klucken T., Vater A., Wichmann S., et al. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology. 2017; 77: 261-74. https://doi.org/10.1016/j.psyneuen.2016.12.017
24. Van der Meij L., Gubbels N., Schaveling J., Almela M., van Vugt M. Hair cortisol and work stress: Importance of workload and stress model (JDCS or ERI). Psychoneuroendocrinology. 2018; 89: 78-85. https://doi.org/10.1016/j.psyneuen.2017.12.020
25. Klinge C.M., Clark B.J., Prough R.A. Dehydroepiandrosterone research: past, current, and future. Vitam. Horm. 2018; 108: 1-28. https://doi.org/10.1016/bs.vh.2018.02.002
26. Traish A.M., Kang H.P., Saad F., Guay A.T. Dehydroepiandrosterone (DHEA)-a precursor steroid or an active hormone in human physiology. J. Sex. Med. 2011; 8(11): 2960-82; quiz 2983. https://doi.org/10.1111/j.1743-6109.2011.02523.x
27. Morgan C.A. 3rd., Southwick S., Hazlett G., Rasmusson A., Hoyt G., Zimolo Z., et al. Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch. Gen. Psychiatry. 2004; 61(8): 819-25. https://doi.org/10.1001/archpsyc.61.8.819
28. Mommersteeg P.M., Heijnen C.J., Kavelaars A., van Doornen L.J. Immune and endocrine function in burnout syndrome. Psychosom. Med. 2006; 68(6): 879-86. https://doi.org/10.1097/01.psy.0000239247.47581.0c
29. Lennartsson A.K., Theorell T., Rockwood A.L., Kushnir M.M., Jonsdottir I.H. Perceived stress at work is associated with lower levels of DHEA-S. PLoS One. 2013; 8(8): e72460. https://doi.org/10.1371/journal.pone.0072460
30. Gray M., Bingham B., Viau V. A comparison of two repeated restraint stress paradigms on hypothalamic-pituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J. Neuroendocrinol. 2010; 22(2): 92-101. https://doi.org/10.1111/j.1365-2826.2009.01941.x
31. Herman J.P., Tasker J.G. Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front. Endocrinol. (Lausanne). 2016; (7): 137. https://doi.org/10.3389/fendo.2016.00137
32. Asberg M., Nygren A., Leopardi R., Rylander G., Peterson U., Wilczek L., et al. Novel biochemical markers of psychosocial stress in women. PLoS One. 2009; 4(1): e3590. https://doi.org/10.1371/journal.pone.0003590
33. Deneva T., Ianakiev Y., Keskinova D. Burnout syndrome in physicians-psychological assessment and biomarker research. Medicina (Kaunas). 2019; 55(5): 209. https://doi.org/10.3390/medicina55050209
34. Wirth M.M., Meier E.A., Fredrickson B.L., Schultheiss O.C. Relationship between salivary cortisol and progesterone levels in humans. Biol. Psychol. 2007; 74(1): 104-7. https://doi.org/10.1016/j.biopsycho.2006.06.007
35. Fischer S., Strahler J., Markert C., Skoluda N., Doerr J.M., Kappert M., et al. Effects of acute psychosocial stress on the hypothalamic-pituitary-thyroid (HPT) axis in healthy women. Psychoneuroendocrinology. 2019; 110: 104438. https://doi.org/10.1016/j.psyneuen.2019.104438
36. Asberg M., Nygren A., Leopardi R., Rylander G., Peterson U., Wilczek L., et al. Novel biochemical markers of psychosocial stress in women. PLoS One. 2009; 4(1): e3590. https://doi.org/10.1371/journal.pone.0003590
37. Guo Y., Lam L., Luo Y., Plummer V., Cross W., Li H., et al. Female nurses’ burnout symptoms: No association with the Hypothalamic-pituitary-thyroid (HPT) axis. Psychoneuroendocrinology. 2017; 77: 47-50. https://doi.org/10.1016/j.psyneuen.2016.11.020
38. Tsou M.T., Chen J.Y. Burnout and metabolic syndrome among healthcare workers: Is subclinical hypothyroidism a mediator? J. Occup. Health. 2021; 63(1): e12252. https://doi.org/10.1002/1348-9585.12252
39. Yaribeygi H., Panahi Y., Sahraei H., Johnston T.P., Sahebkar A. The impact of stress on body function: A review. EXCLI J. 2017; 16: 1057-72. https://doi.org/10.17179/excli2017-480
40. Jarczok M.N., Jarczok M., Mauss D., Koenig J., Li J., Herr R.M., et al. Autonomic nervous system activity and workplace stressors - a systematic review. Neurosci. Biobehav. Rev. 2013; 37(8): 1810-23. https://doi.org/10.1016/j.neubiorev.2013.07.004
41. Appelhans B.M., Luecken L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006; 10(3): 229-40. https://doi.org/10.1037/1089-2680.10.3.229
42. Von Borell E., Langbein J., Després G., Hansen S., Leterrier C., Marchant-Forde J., et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals - a review. Physiol. Behav. 2007; 92(3): 293-316. https://doi.org/10.1016/j.physbeh.2007.01.007
43. Thayer J.F., Yamamoto S.S., Brosschot J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors.Int. J. Cardiol. 2010; 141(2): 122-31. https://doi.org/10.1016/j.ijcard.2009.09.543
44. Ciobanu A.M., Damian A.C., Neagu C. Association between burnout and immunological and endocrine alterations. Rom. J. Morphol. Embryol. 2021; 62(1): 13-8. https://doi.org/10.47162/RJME.62.1.02
45. Metlaine A., Sauvet F., Gomez-Merino D., Boucher T., Elbaz M., Delafosse J.Y., et al. Sleep and biological parameters in professional burnout: A psychophysiological characterization. PLoS One. 2018; 13(1): e0190607. https://doi.org/10.1371/journal.pone.0190607
46. Ciobanu A.M., Damian A.C., Neagu C. Association between burnout and immunological and endocrine alterations. Rom. J. Morphol. Embryol. 2021; 62(1): 13-8. https://doi.org/10.47162/RJME.62.1.02
47. Maydych V., Claus M., Dychus N., Ebel M., Damaschke J., Diestel S., et al. Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function. PLoS One. 2017; 12(11): e0188108. https://doi.org/10.1371/journal.pone.0188108
48. Newton T.L., Fernandez-Botran R., Lyle K.B., Szabo Y.Z., Miller J.J., Warnecke A.J. Salivary cytokine response in the aftermath of stress: An emotion regulation perspective. Emotion. 2017; 17(6): 1007-20. https://doi.org/10.1037/emo0000156
49. Tian R., Hou G., Song L., Zhang J., Yuan T.F. Chronic grouped social restriction triggers long-lasting immune system adaptations. Oncotarget. 2017; 8(20): 33652-7. https://doi.org/10.18632/oncotarget.16856
50. Maydych V., Claus M., Dychus N., Ebel M., Damaschke J., Diestel S., et al. Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function. PLoS One. 2017; 12(11): e0188108. https://doi.org/10.1371/journal.pone.0188108
51. Gajewski P.D., Boden S., Freude G., Potter G.G., Claus M., Bröde P., et al. Executive control, ERP and pro-inflammatory activity in emotionally exhausted middle-aged employees.Comparison between subclinical burnout and mild to moderate depression. Psychoneuroendocrinology. 2017; 86: 176-86. https://doi.org/10.1016/j.psyneuen.2017.09.017
52. Von Känel R., Bellingrath S., Kudielka B.M. Association between burnout and circulating levels of pro- and anti-inflammatory cytokines in schoolteachers. J. Psychosom. Res. 2008; 65(1): 51-9. https://doi.org/10.1016/j.jpsychores.2008.02.007
53. Willerson J.T., Ridker P.M. Inflammation as a cardiovascular risk factor. Circulation. 2004; 109(21 Suppl. 1): II2-10. https://doi.org/10.1161/01.CIR.0000129535.04194.38
54. Noushad S., Ahmed S., Ansari B., Mustafa U.H., Saleem Y., Hazrat H. Physiological biomarkers of chronic stress: A systematic review.Int. J. Health Sci. (Qassim). 2021; 15(5): 46-59.
55. Toker S., Shirom A., Shapira I., Berliner S., Melamed S. The association between burnout, depression, anxiety, and inflammation biomarkers: C-reactive protein and fibrinogen in men and women. J. Occup. Health Psychol. 2005; 10(4): 344-62. https://doi.org/10.1037/1076-8998.10.4.344
56. Becker L., Dupke A., Rohleder N. Associations between C-reactive protein levels, exercise addiction, and athlete burnout in endurance athletes. Front. Psychol. 2021; 12: 615715. https://doi.org/10.3389/fpsyg.2021.615715
57. Jonsdottir I.H., Hägg D.A., Glise K., Ekman R. Monocyte chemotactic protein-1 (MCP-1) and growth factors called into question as markers of prolonged psychosocial stress. PLoS One. 2009; 4(11): e7659. https://doi.org/10.1371/journal.pone.0007659
58. Christensen J.O., Nilsen K.B., Hopstock L.A., Steingrímsdóttir Ó.A., Nielsen C.S., Zwart J.A., et al. Shift work, low-grade inflammation, and chronic pain: a 7-year prospective study.Int. Arch. Occup. Environ. Health. 2021; 94(5): 1013-22. https://doi.org/10.1007/s00420-020-01626-2
59. Johnson T.V., Abbasi A., Master V.A. Systematic review of the evidence of a relationship between chronic psychosocial stress and C-reactive protein. Mol. Diagn. Ther. 2013; 17(3): 147-64. https://doi.org/10.1007/s40291-013-0026-7
60. Esser A., Kraus T., Tautz A., Minten H., Lang J. Building an allostatic load index from data of occupational medical checkup examinations: a feasibility study. Stress. 2019; 22(1): 9-16. https://doi.org/10.1080/10253890.2018.1492537
61. McEwen B.S. Biomarkers for assessing population and individual health and disease related to stress and adaptation. Metabolism. 2015; 64(3 Suppl. 1): S2-S10. https://doi.org/10.1016/j.metabol.2014.10.029
62. Mauss D., Li J., Schmidt B., Angerer P., Jarczok M.N. Measuring allostatic load in the workforce: a systematic review. Ind. Health. 2015; 53(1): 5-20. https://doi.org/10.2486/indhealth.2014-0122
Рецензия
Для цитирования:
Безрукова Г.А., Микеров А.Н. Биомаркеры хронического профессионального стресса (обзор литературы). Гигиена и санитария. 2022;101(6):649-654. https://doi.org/10.47470/0016-9900-2022-101-6-649-654
For citation:
Bezrukova G.A., Mikerov A.N. Biomarkers of chronic occupational stress (literature review). Hygiene and Sanitation. 2022;101(6):649-654. (In Russ.) https://doi.org/10.47470/0016-9900-2022-101-6-649-654