Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Genetic risk factors for the development of vibration disease (literature review)

https://doi.org/10.47470/0016-9900-2025-104-3-340-347

EDN: jueqrw

Abstract

Vibration disease (VD) occupies one of the leading places in occupational pathology. This disease is characterized by the complexity of pathogenetic mechanisms, polysyndromicity, chronic course, resistance to therapy, and often leads to disability and disablement in patients. Among the possible risk factors for the development of VD, the attention of researchers is paid to genetic predisposition. The work summarizes the results of modern research on the identification of candidate genes and their polymorphisms that determine predisposition to the occurrence of VD and a number of other diseases that have similar pathogenetic mechanisms. The literature search was carried out in the English text databases PubMed, Scopus, Web of Science and in the scientific electronic library eLIBRARY.ru (RSCI). The review examines polymorphisms of some genes of phase I of xenobiotic detoxification, a family of cation channels with transient receptor potential, superoxide dismutases, glutathione peroxidases, epoxide hydrolases, matrix metalloproteinases, caspases, endothelial nitric oxide synthase, heat shock proteins, folate cycle, sirtuins, endothelins, angiotensin-converting enzyme, serotonin receptor genes, as well as interleukins and tumor necrosis factor genes. Based on literature data, a complex mechanism of interaction between different genes can be assumed to be involved in the formation and development of VD. The results of molecular genetic studies confirm the pathogenetic complexity and polymorphism of the symptoms of VD. Further search and study of new genetic predictors of VD development is required. The data obtained will not only expand our understanding of the pathogenesis and mechanisms of VD development, but also provide tools for prediction and a personalized approach to prevention and treatment.

Contribution:
Muhammadiyeva G.F. – the concept and design of the study, collection and processing of material, writing text, editing;
Shaihlislamova E.R. – the concept and design of the study, editing;
Karimov D.D. – collection and processing of material;
Karimov D.O. – the concept and design of the study, editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgment. The work was carried out within the framework of the industry research program of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare for 2021–2025. «Scientific justification for the national system for ensuring sanitary and epidemiological well-being, managing health risks and improving the quality of life of the Russian population» clause 2.2.9.

Received: August 15, 2024 / Accepted: December 3, 2024 / Published: March 31, 2025

About the Authors

Guzel F. Mukhammadiyeva
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation

PhD (Biology), Senior Researcher at the Department of Toxicology and Genetics with the Experimental Clinics for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: ufniimt@mail.ru



Elmira R. Shaihlislamova
Ufa Research Institute of Occupational Health and Human Ecology; Bashkir State Medical University
Russian Federation

PhD (Medicine), Director, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: fbun@uniimtech.ru



Denis D. Karimov
Ufa Research Institute of Occupational Health and Human Ecology
Russian Federation

PhD (Biology), Senior Researcher at the Department of Toxicology and Genetics with the Experimental Clinics for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: lich-tsar@mail.ru



Denis O. Karimov
Ufa Research Institute of Occupational Health and Human Ecology; N.A. Semashko National Research Institute of Public Health»
Russian Federation

PhD (Medicine), Head of the Department of Toxicology and Genetics with the Experimental Clinics for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: karimovdo@gmail.com



References

1. Mukhina N.A., Babanova S.A. Occupational Diseases [Professional’nye bolezni]. Moscow: GEOTAR-Media; 2018. (in Russian)

2. Shaikhlislamova E.R., Valeeva E.T.I., Volgareva A.D., Kondrova N.S., Galimova R.R., Masyagutova L.M. Occupational diseases caused by physical factors in the republic of Bashkortostan. Meditsina truda i ekologiya cheloveka. 2018; (4): 63–9. https://elibrary.ru/ypnmfv (in Russian)

3. Babanov S.A., Azovskova T.A., Vakurova N.V., Barayeva R.A. About modern aspects of the classification of vibration disease. Terapevt. 2019; (4): 21–7. https://elibrary.ru/zcqfgh (in Russian)

4. Babanov S., Azovskova T., Kiryushina T., Lotkov V., Agarkova A., Bezshanova A., et al. Vibration disease: evolution of classification views, diagnosis, problems of examining. Vrach. 2023; 34(4): 11–7. https://doi.org/10.29296/25877305-2023-04-02 https://elibrary.ru/ezyjlk (in Russian)

5. Skoromets A.A. Tunnel Compression-Ischemic Mono- and Multi-Europathies [Tunnel’nye kompressionno-ishemicheskie mono- i mul’tinevropatii] Moscow: GEOTAR-Media; 2022. (in Russian)

6. Babanov S.A., Azovskova T.A., Baraeva R.A. The impact of industrial vibration on the body of workers in all industries. Okhrana truda i tekhnika bezopasnosti v sel’skom khozyaistve. 2020; (2): 35–44. https://elibrary.ru/bczcbh (in Russian)

7. Morioka M., Whitehouse D.J., Griffin M.J. Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel. Somatosens Mot. Res. 2008; 25(2): 101–12. https://doi.org/10.1080/08990220802045574

8. Thompson A.M., House R., Krajnak K., Eger T. Vibration-white foot: a case report. Occup. Med (Lond.). 2010; 60(7): 572–4. https://doi.org/10.1093/occmed/kqq107

9. House R., Jiang D., Thompson A., Eger T., Krajnak K., Sauvé J., et al. Vasospasm in the feet in workers assessed for HAVS. Occup. Med (Lond). 2011; 61(2): 115–20. https://doi.org/10.1093/occmed/kqq191

10. Eger T., Thompson A., Leduc M., Krajnak K., Goggins K., Godwin A., et al. Vibration induced white-feet: overview and field study of vibration exposure and reported symptoms in workers. Work. 2014; 47(1): 101–10. https://doi.org/10.3233/WOR-131692

11. Pyykkö I., Färkkilä M., Inaba R., Starck J., Pekkarinen J. Effect of hand-arm vibration on inner ear and cardiac functions in man. Nagoya J. Med. Sci. 1994; 57(Suppl.): 113–9.

12. Harada N. Autonomic nervous function of hand-arm vibration syndrome patients. Nagoya J. Med. Sci. 1994; 57(Suppl.): 77–85.

13. Zhukova A.G., Gorokhova L.G. A retrospective in molecular and genetic studies of production-related pathology. Meditsina v Kuzbasse. 2020; 20(3): 5–11. https://doi.org/10.24412/2687-0053-2021-3-5-11 https://elibrary.ru/xwxgem (in Russian)

14. Baranov V.S. Genomics and predictive medicine. Sibirskii zhurnal klinicheskoi i eksperimental’noi meditsiny. 2021; 36(4): 14–28. https://doi.org/10.29001/2073-8552-2021-36-4-14-28 https://elibrary.ru/kkkzma (in Russian)

15. Yadykina T.K., Korotenko O.Yu., Semenova E.A., Bugaeva M.S., Zhukova A.G. Study of glutathione-s-transferase (GST) T1 and M1 genes in aluminum industry workers with comorbid cardiovascular pathology. Meditsina truda i promyshlennaya ekologiya. 2023; 63(8): 519–27. https://doi.org/10.31089/1026-9428-2023-63-8-519-527 https://elibrary.ru/vfnyqa (in Russian)

16. Mattagajasingh I., Kim C.S., Naqvi A., Yamamori T., Hoffman T.A., Jung S.B., et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad Sci. USA. 2007; 104(37): 14855–60. https://doi.org/10.1073/pnas.0704329104

17. Voelter-Mahlknecht S., Rossbach B., Schleithoff C., Dransfeld C.L., Letzel S., Mahlknecht U. Sirtuin1 single nucleotide polymorphism (A2191G) is a diagnostic marker for vibration-induced white finger disease. Clin. Epigenetics. 2012; 4(1): 18. https://doi.org/10.1186/1868-7083-4-18

18. Spitsyn V.A., Kuzmina L.P., Makarov S.V., Karapetian M.K., Popova M.V., Bichkovskaya L.S., et al. Pattern of the ACE, CHIT1, PON1, SIRT1 and NOS3 gene polymorphism distributions in vibration syndrome patients. Meditsinskaya genetika. 2015; 14(5): 23–7. https://elibrary.ru/unuhoz (in Russian)

19. Ahmad A., Dempsey S.K., Daneva Z., Azam M., Li N., Li P.L., et al. Role of nitric oxide in the cardiovascular and renal systems. Int. J. Mol. Sci. 2018; 19(9): 2605. https://doi.org/10.3390/ijms19092605

20. Oliveira-Paula G.H., Lacchini R., Tanus-Santos J.E. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016; 575(2 Pt. 3): 584–99. https://doi.org/10.1016/j.gene.2015.09.061

21. Yao Y.S., Chang W.W., Jin Y.L., He L.P. An updated meta-analysis of endothelial nitric oxide synthase gene: three well-characterized polymorphisms with ischemic stroke. Gene. 2013; 528(2): 84–92. https://doi.org/10.1016/j.gene.2013.06.047

22. Rai H., Parveen F., Kumar S., Kapoor A., Sinha N. Association of endothelial nitric oxide synthase gene polymorphisms with coronary artery disease: an updated meta-analysis and systematic review. PLoS One. 2014; 9(11): e113363. https://doi.org/10.1371/journal.pone.0113363

23. Gerasimenko О.N., Shpagina L.A., Gorbunova А.M., Shpagin I.S., Sergeeva Ya.S. Clinical-functional and molecular characteristics of comorbid pathology (vibration disease combined with arterial hypertension). Ateroskleroz. 2022; 18(1): 68–75. https://elibrary.ru/ydjovz (in Russian)

24. Poteryaеvа E.L., Smirnova E.L., Маksimov V.N., Kоlesnik K.N., Nikiforova N.G., Peskov S.A. The role of individual risk factors in the formation of peculiarities of the main forms of occupational diseases in the post-exposure period. Sibirskii nauchnyi meditsinskii zhurnal. 2017; 37(1): 41–7. https://elibrary.ru/xuwewx (in Russian)

25. Shpagina L.A., Gerasimenko O.N., Drobyshev V.A., Kuznetsova G.V. Polymorphism of genes-predictors of high risk of vascular complications in patients with vibration disease combined with arterial hypertension. Sanitarnyi vrach. 2017; (5–6): 60–3. https://elibrary.ru/zmdufj (in Russian)

26. Blanquart S., Borowiec A.S., Delcourt P., Figeac M., Emerling C.A., Meseguer A.S., et al. Evolution of the human cold/menthol receptor, TRPM8. Mol. Phylogenet. Evol. 2019; 136: 104–18. https://doi.org/10.1016/j.ympev.2019.04.011

27. Wang M., Gu Y., Meng S., Kang L., Yang J., Sun D., et al. Association between TRP channels and glutamatergic synapse gene polymorphisms and migraine and the comorbidities anxiety and depression in a Chinese population. Front. Genet. 2023; 14: 1158028. https://doi.org/10.3389/fgene.2023.1158028

28. He J., Kelly T.N., Zhao Q., Li H., Huang J., Wang L., et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc. Genet. 2013; 6(6): 598–607. https://doi.org/10.1161/CIRCGENETICS.113.000307

29. Smirnova E.L., Poteryaeva E.L., Maksimov V.N., Nesina I.A. The concept of individual risk in the formation and features of the course of vibration disease. Meditsina v Kuzbasse. 2020; 19(1): 35–41. https://elibrary.ru/ddazub (in Russian)

30. Abd El-Aziz T.A., Mohamed R.H. Influence of MTHFR C677T gene polymorphism in the development of cardiovascular disease in Egyptian patients with rheumatoid arthritis. Gene. 2017; 610: 127–32. https://doi.org/10.1016/j.gene.2017.02.015

31. Luo Z., Lu Z., Muhammad I., Chen Y., Chen Q., Zhang J., et al. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis. 2018; 17(1): 191. https://doi.org/10.1186/s12944-018-0837-y

32. Zhu J., Wang Z., Tao L., Han L., Huang Q., Fang X., et al. MTHFR gene polymorphism association with psoriatic arthritis risk and the efficacy and hepatotoxicity of methotrexate in psoriasis. Front. Med. (Lausanne). 2022; 9: 869912. https://doi.org/10.3389/fmed.2022.869912

33. Liu Y., Xu C., Wang Y., Yang C., Pu G., Zhang L., et al. Association analysis of MTHFR (rs1801133 and rs1801131) and MTRR (rs1801394) gene polymorphisms towards the development of hypertension in the Bai population from Yunnan, China. Clin. Exp. Hypertens. 2023; 45(1): 2206066. https://doi.org/10.1080/10641963.2023.2206066

34. Zhao L., Li T., Dang M., Li Y., Fan H., Hao Q., et al. Association of methylenetetrahydrofolate reductase (MTHFR) rs1801133 (677C>T) gene polymorphism with ischemic stroke risk in different populations: An updated meta-analysis. Front. Genet. 2023; 13: 1021423. https://doi.org/10.3389/fgene.2022.1021423

35. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990; 86(4): 1343–6. https://doi.org/10.1172/JCI114844

36. Patel D.D., Parchwani D.N., Dikshit N., Parchwani T. Analysis of the pattern, alliance and risk of rs1799752 (ACE I/D Polymorphism) with essential hypertension. Indian J. Clin. Biochem. 2022; 37(1): 18–28. https://doi.org/10.1007/s12291-020-00927-0

37. Luo S., Shi C., Wang F., Wu Z. Association between the Angiotensin-Converting Enzyme (ACE) genetic polymorphism and diabetic retinopathy-a meta-analysis comprising 10,168 subjects. Int. J. Environ. Res. Public Health. 2016; 13(11): 1142. https://doi.org/10.3390/ijerph13111142

38. Gouissem I., Midani F., Soualmia H., Bouchemi M., Ouali S., Kallele A., et al. Contribution of the ACE (rs1799752) and CYP11B2 (rs1799998) gene polymorphisms to atrial fibrillation in the Tunisian population. Biol. Res. Nurs. 2022; 24(1): 31–9. https://doi.org/10.1177/10998004211029376

39. Ramanathan B., Nagarajan G., Velayutham K. Association of angiotensin‑converting enzyme gene polymorphism (rs1799752) with type 2 diabetes mellitus, hypertension, and chronic kidney disease and its clinical relevance: A preliminary study from South India. Chron. Diabetes Res. Pract. 2022; 1(2): 51–7. https://doi.org/10.4103/cdrp.cdrp_6_22

40. Kolyaskina M.M., Anvarul N.A., Likontseva A.S. The role of CYP1A1 and ERNX1 gene polymorphisms in oxidative stress mechanisms in patients with vibration disease. Meditsina truda i promyshlennaya ekologiya. 2019; 59(9): 652. https://doi.org/10.31089/1026-9428-2019-59-9-652-653 https://elibrary.ru/qppogo (in Russian)

41. Kononykhina N.V., Bachinskii O.N., Babkina V.I., Trubnikova E.V., Ivanov V.P. Involvement of gene EPHX1 polymorphic variants in development of occupational and nonoccupational chronic lung disease in residents of Kursk region. Pul’monologiya. 2011; (5): 25–8. https://elibrary.ru/okmtvn (in Russian)

42. Bezrukavnikova L.M., Anokhin N.N., Tsidilkovskaya E.S. Association of molecular genetic markers and oxidative stress indices in workers in contact with asbestos dust. Meditsina truda i promyshlennaya ekologiya. 2019; 59(9): 560. https://doi.org/10.31089/1026-9428-2019-59-9-560-561 https://elibrary.ru/znsclh (in Russian)

43. Zhang M., Wu J.M., Zhang Q.S., Yan D.W., Ren L.J., Li W.P. The association of CYP1A1 genetic polymorphisms and additional gene-gene interaction with ischemic stroke in the eastern Han of China. Neurol. Sci. 2016; 37(10): 1679–84. https://doi.org/10.1007/s10072-016-2652-4.

44. Peng D.D., Xie W., Yu Z.X. Impact of interaction between CYP1A1 genetic polymorphisms and smoking on coronary artery disease in the Han of China. Clin. Exp. Hypertens. 2017; 39(4): 339–43. https://doi.org/10.1080/10641963.2016.1259326

45. Sun T., Gao Y., Tan W., Ma S., Shi Y., Yao J., et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat. Genet. 2007; 39(5): 605–13. https://doi.org/10.1038/ng2030

46. Maksimov V.N., Parkhomenko O.М., Lozhkina N.G., Gurazheva A.A., Maksimova S.V., Ivanova A.A. Some molecular genetic markers of progressive atherosclerosis in patients with coronary heart disease. Ateroskleroz. 2022; 18(1): 6–13. https://elibrary.ru/fivrqv (in Russian)

47. Gundapaneni K.K., Shyamala N., Galimudi R.K., Kupsal K., Gantala S.R., Padala C., et al. Polymorphic variants of Caspase genes (8 & 3) in the risk prediction of coronary artery disease. Gene. 2017; 627: 278–83. https://doi.org/10.1016/j.gene.2017.06.035

48. Brown K.L., Seale K.B., El Khoury L.Y., Posthumus M., Ribbans W.J., Raleigh S.M., et al. Polymorphisms within the COL5A1 gene and regulators of the extracellular matrix modify the risk of Achilles tendon pathology in a British case-control study. J. Sports Sci. 2017; 35(15): 1475–83. https://doi.org/10.1080/02640414.2016.1221524

49. Rahim M., Mannion S., Klug B., Hobbs H., van der Merwe W., Posthumus M., et al. Modulators of the extracellular matrix and risk of anterior cruciate ligament ruptures. J. Sci. Med. Sport. 2017; 20(2): 152–8. https://doi.org/10.1016/j.jsams.2016.07.003

50. Smirnova E.L., Poteryaeva E.L., Ivanova A.A., Maksimov V.N., Funtikova I.S., Nesina I.A. Association of id polymorphism of the CASP8 gene with vibration disease. Meditsina truda i promyshlennaya ekologiya. 2022; 62(12): 809–13. https://doi.org/10.31089/1026-9428-2022-62-12-809-813 https://elibrary.ru/srspyj (in Russian)

51. Rey J., Cretel E., Jean R., Pastor M.J., Durand J.M. Serotonin reuptake inhibitors, Raynaud’s phenomenon and erythromelalgia. Rheumatology (Oxford). 2003; 42(4): 601–2. https://doi.org/10.1093/rheumatology/keg137

52. Chen Q., Lang L., Xiao B., Lin H., Yang A., Li H., et al. HTR1B gene variants associate with the susceptibility of Raynauds’ phenomenon in workers exposed hand-arm vibration. Clin. Hemorheol. Microcirc. 2016; 63(4): 335–47. https://doi.org/10.3233/CH-152021

53. Herrick A.L. Pathogenesis of Raynaud’s phenomenon. Rheumatology (Oxford). 2005; 44(5): 587–96. https://doi.org/10.1093/rheumatology/keh552

54. Vos M.J., Hageman J., Carra S., Kampinga H.H. Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry. 2008; 47(27): 7001–11. https://doi.org/10.1021/bi800639z

55. Srivastava K., Narang R., Bhatia J., Saluja D. Expression of heat shock protein 70 gene and its correlation with inflammatory markers in essential hypertension. PLoS One. 2016; 11(3): e0151060. https://doi.org/10.1371/journal.pone.0151060

56. Hrira M.Y., Chkioua L., Slimani A., Chahed H., Mosbah H., Khaldoun H.B., et al. Hsp70-2 gene polymorphism: susceptibility implication in Tunisian patients with coronary artery disease. Diagn. Pathol. 2012; 7(1): 88. https://doi.org/10.1186/1746-1596-7-88

57. Mehramiz M., Hassanian S.M., Mardan-Nik M., Pasdar A., Jamialahmadi K., Fiuji H., et al. The interaction between a HSP-70 gene variant with dietary calories in determining serum markers of inflammation and cardiovascular risk. Clin. Nutr. 2018; 37(6 Pt. A): 2122–6. https://doi.org/10.1016/j.clnu.2017.10.006

58. Chernyak Yu.I., Merinova A.P. Analysis of polymorphic loci of candidate genes in patients with occupational diseases. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2023; 102(7): 689–94. https://doi.org/10.47470/0016-9900-2023-102-7-689-694 https://elibrary.ru/glwiya (in Russian)

59. Chernyak Y.I., Kudaeva I.V. Analysis of HSPA1B (+1267A>G) genetic polymorphism in patients with vibration disease in combination with metabolic syndrome. Bull. Exp. Biol. Med. 2021; 171(3): 375–8. https://doi.org/10.1007/s10517-021-05231-2

60. Virtanen I.M., Karppinen J., Taimela S., Ott J., Barral S., Kaikkonen K., et al. Occupational and genetic risk factors associated with intervertebral disc disease. Spine (Phila Pa 1976). 2007; 32(10): 1129–34. https://doi.org/10.1097/01.brs.0000261473.03274.5c

61. Solovieva S., Leino-Arjas P., Saarela J., Luoma K., Raininko R., Riihimäki H. Possible association of interleukin 1 gene locus polymorphisms with low back pain. Pain. 2004; 109(1-2): 8–19. https://doi.org/10.1016/j.pain.2003.10.020

62. Noponen-Hietala N., Virtanen I., Karttunen R., Schwenke S., Jakkula E., Li H., et al. Genetic variations in IL6 associate with intervertebral disc disease characterized by sciatica. Pain. 2005; 114(1–2): 186–94. https://doi.org/10.1016/j.pain.2004.12.015

63. Zayed N., Afif H., Chabane N., Mfuna-Endam L., Benderdour M., Martel-Pelletier J., et al. Inhibition of interleukin-1beta-induced matrix metalloproteinases 1 and 13 production in human osteoarthritic chondrocytes by prostaglandin D2. Arthritis Rheum. 2008; 58(11): 3530–40. https://doi.org/10.1002/art.23958

64. Dinarello C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009; 27: 519–50. https://doi.org/10.1146/annurev.immunol.021908.132612

65. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011; 117(14): 3720–32. https://doi.org/10.1182/blood-2010-07-273417

66. Gabay C., Lamacchia C., Palmer G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 2010; 6(4): 232–41. https://doi.org/10.1038/nrrheum.2010.4

67. Le Maitre C.L., Hoyland J.A., Freemont A.J. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res. Ther. 2007; 9(4): R77. https://doi.org/10.1186/ar2275

68. Le Maitre C.L., Freemont A.J., Hoyland J.A. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther. 2005; 7(4): R732–45. https://doi.org/10.1186/ar1732

69. Burke J.G., Watson R.W., McCormack D., Dowling F.E., Walsh M.G., Fitzpatrick J.M. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J. Bone Joint Surg. Br. 2002; 84(2): 196–201. https://doi.org/10.1302/0301-620x.84b2.12511

70. Risbud M.V., Shapiro I.M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 2014; 10(1): 44–56. https://doi.org/10.1038/nrrheum.2013.160

71. Ye W., Ma R.F., Su P.Q., Huang D.S., Liu S.L., Chen W.J., et al. Association of single nucleotide polymorphisms of IL-1b with lumbar disc disease. Yi Chuan. 2007; 29(8): 923–8. (in Chinese)

72. Kim S.H., Mok J.W., Kim H.S., Joo C.K. Association of –31T>C and –511 C>T polymorphisms in the interleukin 1 beta (IL1B) promoter in Korean keratoconus patients. Mol. Vis. 2008; 14: 2109–16.

73. Choi J., Choi S.A., Kim S.Y., Kim H., Lim B.C., Hwang H., et al. Association analysis of interleukin-1β, interleukin-6, and HMGB1 variants with postictal serum cytokine levels in children with febrile seizure and generalized epilepsy with febrile seizure plus. J. Clin. Neurol. 2019; 15(4): 555–63. https://doi.org/10.3988/jcn.2019.15.4.555

74. Rong H., He X., Wang L., Bai M., Jin T., Wang Y., et al. Association between IL1B polymorphisms and the risk of rheumatoid arthritis. Int. Immunopharmacol. 2020; 83: 106401. https://doi.org/10.1016/j.intimp.2020.106401

75. Wang Z., Song X., Fang Q., Xia W., Luo A. Polymorphism of IL-1β rs16944(T/C) associated with serum levels of IL-1β and subsequent stimulation of extracellular matrix degradation affects intervertebral disk degeneration susceptibility. Ther. Clin. Risk Manag. 2021; 17: 453–61. https://doi.org/10.2147/TCRM.S308653

76. Kishimoto T. Interleukin-6: from basic science to medicine – 40 years in immunology. Annu. Rev. Immunol. 2005; 23: 1–21. https://doi.org/10.1146/annurev.immunol.23.021704.115806

77. Fishman D., Faulds G., Jeffery R., Mohamed-Ali V., Yudkin J.S., Humphries S., et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 1998; 102(7): 1369–76. https://doi.org/10.1172/JCI2629

78. Guan Y., Wang S., Wang J., Meng D., Wu H., Wei Q., et al. Gene polymorphisms and expression levels of interleukin-6 and interleukin-10 in lumbar disc disease: a meta-analysis and immunohistochemical study. J. Orthop. Surg. Res. 2020; 15(1): 54. https://doi.org/10.1186/s13018-020-01588-8

79. Amr K., El-Awady R., Raslan H. Assessment of the –174G/C (rs1800795) and –572G/C (rs1800796) interleukin 6 gene polymorphisms in Egyptian patients with rheumatoid arthritis. Open Access Maced. J. Med. Sci. 2016; 4(4): 574–7. https://doi.org/10.3889/oamjms.2016.110

80. Dar S.A., Haque S., Mandal R.K., Singh T., Wahid M., Jawed A., et al. Interleukin-6-174G > C (rs1800795) polymorphism distribution and its association with rheumatoid arthritis: A case-control study and meta-analysis. Autoimmunity. 2017; 50(3): 158–69. https://doi.org/10.1080/08916934.2016.1261833

81. Sun G., Ba C.L., Gao R., Liu W., Ji Q. Association of IL-6, IL-8, MMP-13 gene polymorphisms with knee osteoarthritis susceptibility in the Chinese Han population. Biosci. Rep. 2019; 39(2): BSR20181346. https://doi.org/10.1042/BSR20181346

82. Kroeger K.M., Carville K.S., Abraham L.J. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol. Immunol. 1997; 34(5): 391–9. https://doi.org/10.1016/s0161-5890(97)00052-7

83. Lee S., Yoo J.I., Kang Y.J. Integrative analyses of genes related to femoral head osteonecrosis: an umbrella review of systematic reviews and meta-analyses of observational studies. J. Orthop. Surg. Res. 2022; 17(1): 182. https://doi.org/10.1186/s13018-022-03079-4

84. Malysheva I.E., Topchieva L.V., Balan O.V., Marusenko I.M., Barysheva O.Y., Kurbatova I.V. Analysis of the association of TNF –238G>A gene polymorphism with the risk of rheumatoid arthritis development in Russian population in the Republic of Karelia. Bull. Exp. Biol. Med. 2018; 165(5): 674–7. https://doi.org/10.1007/s10517-018-4239-y

85. Loures M.A.R., Alves H.V., de Moraes A.G., Santos T.D.S., Lara F.F., Neves J.S.F., et al. Association of TNF, IL12, and IL23 gene polymorphisms and psoriatic arthritis: meta-analysis. Expert Rev. Clin. Immunol. 2019; 15(3): 303–13. https://doi.org/10.1080/1744666X.2019.1564039

86. Krajnak K., Dong R.G., Flavahan S., Welcome D., Flavahan N.A. Acute vibration increases alpha2C-adrenergic smooth muscle constriction and alters thermosensitivity of cutaneous arteries. J. Appl. Physiol. (1985). 2006; 100(4): 1230–7. https://doi.org/10.1152/japplphysiol.00761.2005

87. Welcome D.E., Krajnak K., Kashon M.L., Dong R.G. An investigation on the biodynamic foundation of a rat tail vibration model. Proc. Inst. Mech. Eng. H. 2008; 222(7): 1127–41. https://doi.org/10.1243/09544119JEIM419

88. Krajnak K., Miller G.R., Waugh S., Johnson C., Li S., Kashon M.L. Characterization of frequency-dependent responses of the vascular system to repetitive vibration. J. Occup. Environ. Med. 2010; 52(6): 584–94. https://doi.org/10.1097/JOM.0b013e3181e12b1f

89. Wu J.Z., An K.N., Cutlip R.G., Krajnak K., Welcome D., Dong R.G. Analysis of musculoskeletal loading in an index finger during tapping. J. Biomech. 2008; 41(3): 668–76. https://doi.org/10.1016/j.jbiomech.2007.09.025

90. Xu X.S., Riley D.A., Persson M., Welcome D.E., Krajnak K., Wu J.Z., et al. Evaluation of anti-vibration effectiveness of glove materials using an animal model. Biomed. Mater. Eng. 2011; 21(4): 193–211. https://doi.org/10.3233/BME-2011-0669

91. Krajnak K., Miller G.R., Waugh S. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems. J. Toxicol. Environ. Health A. 2018; 81(1–3): 6–19. https://doi.org/10.1080/15287394.2017.1401022

92. Afonso V., Champy R., Mitrovic D., Collin P., Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007; 74(4): 324–9. https://doi.org/10.1016/j.jbspin.2007.02.002

93. Xie Y.G., Mu H.J., Li Z., Ma J.H., Wang Y.L. Supression of chronic central pain by superoxide dismutase in rats with spinal cord injury: Inhibition of the NMDA receptor implicated. Exp. Ther. Med. 2014; 8(4): 1137–41. https://doi.org/10.3892/etm.2014.1878

94. Wan X.S., Devalaraja M.N., St Clair D.K. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 1994; 13(11): 1127–36. https://doi.org/10.1089/dna.1994.13.1127

95. Hernandez-Saavedra D., McCord J.M. Association of a new intronic polymorphism of the SOD2 gene (G1677T) with cancer. Cell Biochem. Funct. 2009; 27(4): 223–7. https://doi.org/10.1002/cbf.1560

96. Işikli A., Kubat-Üzüm A., Satman İ., Matur Z., Öge A.E., Küçükali C.İ., et al. A SOD2 polymorphism is associated with abnormal quantitative sensory testing in type 2 diabetic patients. Noro Psikiyatr. Ars. 2018; 55(3): 276–9. https://doi.org/10.29399/npa.23027

97. Sutton A., Khoury H., Prip-Buus C., Cepanec C., Pessayre D., Degoul F. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics. 2003; 13(3): 145–57. https://doi.org/10.1097/01.fpc.0000054067.64000.8f

98. Fujimoto H., Taguchi J., Imai Y., Ayabe S., Hashimoto H., Kobayashi H., et al. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur. Heart J. 2008; 29(10): 1267–74. https://doi.org/10.1093/eurheartj/ehm500

99. Valenti L., Conte D., Piperno A., Dongiovanni P., Fracanzani A.L., Fraquelli M., et al. The mitochondrial superoxide dismutase A16V polymorphism in the cardiomyopathy associated with hereditary haemochromatosis. J. Med. Genet. 2004; 41(12): 946–50. https://doi.org/10.1136/jmg.2004.019588

100. Santl Letonja M., Letonja M., Ikolajević-Starcević J.N., Petrovic D. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with carotid atherosclerosis in patients with diabetes mellitus type 2. Int. Angiol. 2012; 31(1): 33–41.

101. Souiden Y., Mallouli H., Meskhi S., Chaabouni Y., Rebai A., Chéour F., et al. MnSOD and GPx1 polymorphism relationship with coronary heart disease risk and severity. Biol. Res. 2016; 49: 22. https://doi.org/10.1186/s40659-016-0083-6

102. Xu M., Xu M., Han L., Yuan C., Mei Y., Zhang H., et al. Role for functional SOD2 polymorphism in pulmonary arterial hypertension in a Chinese population. Int. J. Environ. Res. Public Health. 2017; 14(3): 266. https://doi.org/10.3390/ijerph14030266

103. Synowiec E., Wigner P., Cichon N., Watala C., Czarny P., Saluk-Bijak J., et al. Single-nucleotide polymorphisms in oxidative stress-related genes and the risk of a stroke in a Polish population – a preliminary study. Brain Sci. 2021; 11(3): 391. https://doi.org/10.3390/brainsci11030391

104. Poteriaeva E.L., Smirnova E.L., Nikiforova N.G. Forecasting formation and course of vibration disease on basis of genetic metabolic markers study. Meditsina truda i promyshlennaya ekologiya. 2015; (6): 19–22. https://elibrary.ru/ubemit (in Russian)

105. Govindaraju S.R., Curry B.D., Bain J.L., Riley D.A. Comparison of continuous and intermittent vibration effects on rat-tail artery and nerve. Muscle Nerve. 2006; 34(2): 197–204. https://doi.org/10.1002/mus.20578

106. Krajnak K., Riley D.A., Wu J., McDowell T., Welcome D.E., Xu X.S., et al. Frequency-dependent effects of vibration on physiological systems: experiments with animals and other human surrogates. Ind. Health. 2012; 50(5): 343–53. https://doi.org/10.2486/indhealth.ms1378

107. Krajnak K., Raju S.G., Miller G.R., Johnson C., Waugh S., Kashon M.L., et al. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury. J. Toxicol. Environ. Health A. 2016; 79(3): 101–11. https://doi.org/10.1080/15287394.2015.1104272

108. Krajnak K., Waugh S. Systemic Effects of segmental vibration in an animal model of hand-arm vibration syndrome. J. Occup. Environ. Med. 2018; 60(10): 886–95. https://doi.org/10.1097/JOM.0000000000001396

109. Cauwe B., Van den Steen P.E., Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 2007; 42(3): 113–85. https://doi.org/10.1080/10409230701340019

110. Zeng G.Q., Chen A.B., Li W., Song J.H., Gao C.Y. High MMP-1, MMP-2, and MMP-9 protein levels in osteoarthritis. Genet. Mol. Res. 2015; 14(4): 14811–22. https://doi.org/10.4238/2015.November.18.46

111. Zhang C., Chen L., Gu Y. Polymorphisms of MMP-1 and MMP-3 and susceptibility to rheumatoid arthritis. A meta-analysis. Z. Rheumatol. 2015; 74(3): 258–62. https://doi.org/10.1007/s00393-014-1537-2

112. Milaras C., Lepetsos P., Dafou D., Potoupnis M., Tsiridis E. Association of matrix metalloproteinase (MMP) gene polymorphisms with knee osteoarthritis: a review of the literature. Cureus. 2021; 13(10): e18607. https://doi.org/10.7759/cureus.18607

113. Luo Y., Wang J., Pei J., Rong Y., Liu W., Tang P., et al. Interactions between the MMP-3 gene rs591058 polymorphism and occupational risk factors contribute to the increased risk for lumbar disk herniation: A case-control study. J. Clin. Lab. Anal. 2020; 34(7): e23273. https://doi.org/10.1002/jcla.23273

114. Lesauskaite V., Sinkūnaite G., Benetis R., Grabauskas V., Vaskelyte J., Smalinskiene A., et al. Matrix metalloproteinase-3 gene polymorphism and dilatative pathology of ascending thoracic aorta. Medicina (Kaunas). 2008; 44(5): 386–91.

115. Chakraborti S., Mandal M., Das S., Mandal A., Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol. Cell Biochem. 2003; 253(1–2): 269–85. https://doi.org/10.1023/a:1026028303196

116. Malemud C.J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. Biosci. 2006; 11: 1696–701. https://doi.org/10.2741/1915

117. Eser B., Eser O., Yuksel Y., Aksit H., Karavelioglu E., Tosun M., et al. Effects of MMP-1 and MMP-3 gene polymorphisms on gene expression and protein level in lumbar disc herniation. Genet. Mol. Res. 2016; 15(3). https://doi.org/10.4238/gmr.15038669

118. McCann M.R., Patel P., Pest M.A., Ratneswaran A., Lalli G., Beaucage K.L., et al. Repeated exposure to high-frequency low-amplitude vibration induces degeneration of murine intervertebral discs and knee joints. Arthritis Rheumatol. 2015; 67(8): 2164–75. https://doi.org/10.1002/art.39154

119. McCann M.R., Veras M.A., Yeung C., Lalli G., Patel P., Leitch K.M., et al. Whole-body vibration of mice induces progressive degeneration of intervertebral discs associated with increased expression of Il-1β and multiple matrix degrading enzymes. Osteoarthritis Cartilage. 2017; 25(5): 779–89. https://doi.org/10.1016/j.joca.2017.01.004


Review

For citations:


Mukhammadiyeva G.F., Shaihlislamova E.R., Karimov D.D., Karimov D.O. Genetic risk factors for the development of vibration disease (literature review). Hygiene and Sanitation. 2025;104(3):340-347. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-3-340-347. EDN: jueqrw

Views: 117


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)