Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Contemporary views on morphological changes in internal organs under vibration exposure (literature review)

https://doi.org/10.47470/0016-9900-2025-104-4-415-421

EDN: hvnspg

Abstract

In the structure of occupational morbidity, the leading position is occupied by diseases caused by the influence of physical factors, a special place is given to vibration effects. In Russia, vibration disease is highly prevalent, leads to loss of ability to work, development of complications, and disability. The pathophysiology and clinical manifestations of the disease are widely described. All functional disorders are based on morphological ones, in connection with which it is important to study the material substrate of vibration disease. Its main manifestation is considered to be damage to the nervous and muscular systems.

The purpose of the investigation is to analyze modern studies of the morphological aspects of the impact of vibration on internal organs, which will allow deepening our understanding of the pathogenesis of vibration disease for the purpose of its effective treatment and prevention.

The search and selection of sources was carried out using the following databases: Scopus, MedLine, Web of Science, PubMed, Google Scholar, CyberLeninka, and Russian Science Citation Index (RSCI).

Conclusion. The review presents an analysis of modern studies of the morphological aspects of the effects of vibration on internal organs, which allows a deeper understanding of the pathogenesis of the disease. Many researchers are shown to note the presence of a destructive effect of vibration on the nervous system in experimental animals during the contact and post-contact periods. The picture of morphological changes in other organs and systems allows confirming the concept of vibration disease as a systemic process, reveals the main mechanisms of damage, which are characterized by a consistent increase in adverse effects, starting with vascular disorders of the microvascular bed and ending with multiple organ pathology with irreversible changes.

Contribution:
Bugaeva M.S. study concept, collection of material, writing the text;
Gorokhova L.G. collection of material, writing the text;
Yamshchikova A.V. – editing the text;
Gostyaeva E.P. – collection of material.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: March 3, 2025 / Revised: March 30, 2025 / Accepted: April 8, 2025 / Published: April 30, 2025

About the Authors

Maria S. Bugaeva
Research Institute for Complex Problems of Hygiene and Occupational Diseases
Russian Federation

PhD (Biology), senior researcher of the moleculargenetic and experimental study laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: bugms14@mail.ru



Larisa G. Gorokhova
Research Institute for Complex Problems of Hygiene and Occupational Diseases; Kuzbass Humanitarian and Pedagogical Institute of the Kemerovo State University
Russian Federation

PhD (Biology), leading researcher of the moleculargenetic and experimental study laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: ponomarikova@mail.ru



Anastasia V. Yamshchikova
Research Institute for Complex Problems of Hygiene and Occupational Diseases
Russian Federation

PhD (Medicine), senior researcher of the Laboratory of applied neurophysiology, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: anastyam@bk.ru



Ekaterina P. Gostyaeva
Research Institute for Complex Problems of Hygiene and Occupational Diseases
Russian Federation

Postgraduate student, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: epkolova@gmail.com



References

1. Miryutova N.F., Zaitsev A.A., Panacheva L.A., Zaikina E.A. Efficiency of therapeutically applied physical factors for vibration disease caused by exposure to local vibration (review of literature). Meditsina truda i promyshlennaya ekologiya. 2017; (3): 59–64. https://elibrary.ru/ygbnxh (in Russian)

2. Tchoudinova O.A., Borzunova Yu.M., Samokhvalova G.N., Fyodorov A.A., Venediktov D.L., Boudlianskaya S.V. Systemic approach to organization of prevention and treatment of vibration disease. Meditsina truda i promyshlennaya ekologiya. 2010; 50(2): 23–5. https://elibrary.ru/lbfmgj (in Russian)

3. Izmerov N.F. Preservation and strengthening of workers’ health as the basis of social policy and modernization of the Russian economy. In: The Association Between the Disease and the Profession, from the Standpoint of Evidence-Based Medicine. Proceedings of the All-Russian Scientific and Practical Conference with International Participation [Svyaz’ zabolevaniya s professiei s pozitsii dokazatel’noi meditsiny: Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem]. Kazan’; 2011: 21–4. (in Russian)

4. Babanov S.A., Baraeva R.A. Actuality and prospects of assessment of endothelial dysfunction biomarkers in vibration disease and its combination with arterial hypertension. Upravlenie kachestvom meditsinskoi pomoshchi. 2017; (1–2): 48–52. https://elibrary.ru/ynjzpj (in Russian)

5. Vorobieva V.V., Levchenkova O.S., Shabanov P.D. Pathophysiological mechanisms of neurological disorders in experimental animals exposed to vibration. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii. 2020; 18(3): 213–24. https://elibrary.ru/anncvo (in Russian)

6. Saarkoppel L.M., Kiryakov V.A., Oshkoderov O.A. Role of contemporary biomarkers in vibration disease diagnosis. Meditsina truda i promyshlennaya ekologiya. 2017; 57(2): 6–10. https://elibrary.ru/ygbnmd (in Russian)

7. Smirnova E.L., Poteryaeva E.L., Nikiforova N.G. Role of processes lipid peroxidation and antioxidant protection forming features of the current vibration disease in different date period post-exposure. Spravochnik vracha obshchei praktiki. 2015; (1): 25–30. https://elibrary.ru/tjdpwb (in Russian)

8. Gorokhova L.G., Zhukova A.G., Izmailov A.I., Mikhailova N.N. Prospects of using Securinega suffruticosa (Securinega suffruticosa (Pall.) Rehd.) as a dietary supplement for the prevention of occupation-caused polyneuropathy (literary review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2023; 102(4): 339–44. https://doi.org/10.47470/0016-9900-2023-102-4-339-344 https://elibrary.ru/ugafue (in Russian)

9. Zhukova A.G., Kizichenko N.V., Gorokhova L.G., Kazitskaya A.S. Experimental models of vibration disease (literature review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(7): 776–82. https://doi.org/10.47470/0016-9900-2022-101-7-776-782 https://elibrary.ru/ldcxri (in Russian)

10. Antoshina L.I., Saarkoppel L.M., Pavlovskaya N.A. Influence of vibration on biochemical values characterizing oxidative metabolism, immunity, metabolism in muscular and connective tissues (review of literature). Meditsina truda i promyshlennaya ekologiya. 2009; 49(2): 32–7. https://elibrary.ru/kmkuhp (in Russian)

11. Poteriaeva E.L., Smirnova E.L., Nikiforova N.G. Forecasting formation and course of vibration disease on basis of genetic-metabolic markers study. Meditsina truda i promyshlennaya ekologiya. 2015; 55(6): 19–22. https://elibrary.ru/ubemit (in Russian)

12. Li Y., Rabey K.N., Schmitt D., Norton J.N., Reynolds R.P. Characteristics of vibration that alter cardiovascular parameters in mice. J. Am. Assoc. Lab. Anim. Sci. 2015; 54(4): 372–7.

13. Rieder F., Wiesinger H.P., Kösters A., Müller E., Seynnes O.R. Whole-body vibration training induces hypertrophy of the human patellar tendon. Scand. J. Med. Sci. Sports. 2016; 26(8): 902–10. https://doi.org/10.1111/sms.12522

14. Pankov V.A., Katamanova E.V., Kuleshova M.V., Titov E.A., Kartapoltseva N.V., Yakimova N.L., et al. Dynamics of morphofunctional state of central nervous system in white rats exposed to vibration. Meditsina truda i promyshlennaya ekologiya. 2014; 54(4): 37–43. https://elibrary.ru/scevln (in Russian)

15. Bukharin O.M., Shilov A.V., Rudnitsky S.V. The dynamics of changes under influence of vibration of morphometric parameters of neurons in various layers of sense-motor of the cerebrum cortex. Astrakhanskii meditsinskii zhurnal. 2013; 8(1): 46–8. https://elibrary.ru/qcycnr (in Russian)

16. Bukharin O.M., Rudnitsky S.V., Shilov A.V. The dynamics of changes of morphometric parameters of capillary channel of various layers of cerebellum cortex in vibrating influence. Astrakhanskii meditsinskii zhurnal. 2013; 8(1): 43–6. https://elibrary.ru/qcycnh (in Russian)

17. Yan J.G., Zhang L.L., Agresti M., Yan Y., LoGiudice J., Sanger J.R., et al. Cumulative brain injury from motor vehicle-induced whole-body vibration and prevention by human apolipoprotein A-I molecule mimetic (4F) peptide (an Apo A-I mimetic). J. Stroke Cerebrovasc. Dis. 2015; 24(12): 2759–73. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.007

18. Yakimova N.L., Pankov V.A., Lizarev A.V., Rukavishnikov V.S., Kuleshova M.V., Katamanova E.V., et al. Neurophysiological and morphological effects in the post-exposure vibration period during experimental modeling. Meditsina truda i promyshlennaya ekologiya. 2019; 59(5): 284–90. https://doi.org/10.31089/1026-9428-2019-59-5-284-290 https://elibrary.ru/wlxbbf (in Russian)

19. Titov E.A., Pankov V.A., Lizarev A.V., Kuleshova M.V. Alteration of brain tissue, liver, and kidney in the post-contact period in white rats exposed to vibration. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2019; 98(10): 1108–12. https://elibrary.ru/agrnks (in Russian)

20. Yan J.G., Matloub H.S., Sanger J.R., Zhang L.L., Riley D.A. Vibration-induced disruption of retrograde axoplasmic transport in peripheral nerve. Muscle Nerve. 2005; 32(4): 521–6. https://doi.org/10.1002/mus.20379

21. Loffredo M.A., Yan J.G., Kao D., Zhang L.L., Matloub H.S., Riley D.A. Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves. Muscle Nerve. 2009; 39(6): 770–5. https://doi.org/10.1002/mus.21235

22. Rusanova D.V., Lakhman O.L. The state of the central and peripheral conductive structures in patients with vibration disease. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2019; 98(10): 1085–90. https://elibrary.ru/unpqxo (in Russian)

23. Raju S.G., Rogness O., Persson M., Bain J., Riley D. Vibration from a riveting hammer causes severe nerve damage in the rat tail model. Muscle Nerve. 2011; 44(5): 795–804. https://doi.org/10.1002/mus.22206

24. Govindaraju S.R., Curry B.D., Bain J.L., Riley D.A. Comparison of continuous and intermittent vibration effects on rat-tail artery and nerve. Muscle Nerve. 2006; 34(2): 197–204. https://doi.org/10.1002/mus.20578

25. Curry B.D., Bain J.L., Yan J.G., Zhang L.L., Yamaguchi M., Matloub H.S., et al. Vibration injury damages arterial endothelial cells. Muscle Nerve. 2002; 25(4): 527–34. https://doi.org/10.1002/mus.10058

26. Goenka S., Peelukhana S.V., Kim J., Stringer K.F., Banerjee R.K. Endothelial cell injury under high frequency vibration in the rat-tail model. In: Proceedings of the ASME 2011 Summer Bioengineering Conference. ASME 2011 Summer Bioengineering Conference. Parts A and B. Farmington, Pennsylvania; 2011: 951–2. https://doi.org/10.1115/SBC2011-53571

27. Wei N., Yan R., Lang L., Wei Y., Li J., Yang H., et al. Local vibration induced vascular pathological structural changes and abnormal levels of vascular damage indicators. Microvasc. Res. 2021; 136: 104163. https://doi.org/10.1016/j.mvr.2021.104163

28. Vorobieva V.V., Levchenkova O.S., Lenskaya K.V., Shabanov P.D. Mechanisms of vibration-induced structural myocardial remodeling. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii. 2024; 22(1): 17–32. https://doi.org/10.17816/RCF624185 https://elibrary.ru/rozvaq (in Russian)

29. Vorobieva V.V., Shabanov P.D. Morphological and functional changes of rabbits myocardium under general vibration and after a pharmacological defense with succinate. Vestnik Sankt-Peterburgskogo universiteta. Meditsina. 2010; (3): 196–202. https://elibrary.ru/mvzotx (in Russian)

30. Vorobieva V.V., Shabanov P.D. Vibration model for hypoxic type of cell metabolism evaluated on rabbit cardiomyocytes. Byulleten’ eksperimental’noi biologii i meditsiny. 2009; 147(6): 768–71. https://doi.org/10.1007/s10517-009-0610-3 https://elibrary.ru/mwuahd

31. Vorobieva V.V., Levchenkova O.S., Shabanov P.D. Blockade of rabbit cardiomyocyte calcium channels restores the activity of enzyme-substrate complexes of the respiratory chain in a model of vibration-mediated hypoxia. Biomeditsina. 2022; 18(4): 63–73. https://doi.org/10.33647/2074-5982-18-4-63-73 https://elibrary.ru/tnvzak (in Russian)

32. Vorobieva V.V., Levchenkova O.S., Lenskaya K.V. Role of bioenergetic hypoxia in the morphological transformation of the myocardium during vibration disease. Psikhofarmakologiya i biologicheskaya narkologiya. 2024; 15(1): 69–78. https://doi.org/10.17816/phbn625963 https://elibrary.ru/ahtssm (in Russian)

33. Vorobieva V.V., Shabanov P.D. Tissue specific peculiarities of vibration-induced hypoxia of the rabbit heart, liver and kidney. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii. 2016; 14(1): 46–62. https://doi.org/10.17816/RCF14146-62 https://elibrary.ru/vveogn (in Russian)

34. Vorobieva V.V., Khorobrykh V.G., Shabanov P.D. Effect of general vibration on functions of breath chain in the rabbit parenchimatic organs. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii. 2012; 10(4): 16–29. https://doi.org/10.17816/RCF10416-29 https://elibrary.ru/qzkxsr (in Russian)

35. Hur J.W., Lee J.Y. Effects of chronic vibration stress on liver, kidney and testes of the soft-shelled turtle Pelodiscus sinensis. J. Appl. Anim. Res. 2010; 37(2): 241–5. https://doi.org/10.1080/09712119.2010.9707133

36. Kleshcheva E.P. Morphology of cells under the influence of industrial frequency vibration. Zdorov’e – osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya. 2011; 6(1): 116–8. https://elibrary.ru/sgqwnt (in Russian)

37. Krivonkin K.Y., Rasputin P.G., Shirinzade F.N. Liver morphology changes under whole body vibration exposure. In: The 17th «Occupation and Health» Russian National Congress with International Participation (OHRNC-2023) [Materialy 17-go Rossiyskogo Natsional’nogo Kongressa s mezhdunarodnym uchastiyem «Professiya i zdorov’ye»]. Moscow; 2023: 252–5. https://doi.org/10.31089/978-5-6042929-1-4-2023-1-252-255 https://elibrary.ru/lkxmbn (in Russian)

38. Zuyeva M.A., Shpagina L.A., Gerasimenko O.N., Ziubina L.Yu., Mikhno I.P. Hemodynamic and microcirculatory mechanisms underlying liver disorders in vibration diseases. Meditsina truda i promyshlennaya ekologiya. 2010; 50(8): 14–9. https://elibrary.ru/muhgvx (in Russian)

39. Nepomnyashchikh D.L., Postnikova O.A., Bobrova S.V., Aidagulova S.V. Vibration hepatox and gastropathy: Clinical, morphological and stereological study. Sibirskii meditsinskii zhurnal (g. Tomsk). 2011; 26(4–1): 152–5. https://elibrary.ru/oooaod (in Russian)

40. Vorob’yova V.V., Shabanov P.D. Influence of general vibration on the functions of the kidney mitochondrial respiratory chain of rabbits in the experiment. Meditsina truda i promyshlennaya ekologiya. 2020; 60(5): 344–8. https://doi.org/10.31089/1026-9428-2020-60-5-344-348 https://elibrary.ru/jqzcrf (in Russian)

41. Rasputin P.G., Zheleznov L.M., Mamedova S.M., Murzabek kizi A. The influence of whole body vibration on the condition of kidneys in experiment. Morfologiya. 2020; 157(2–3): 177. https://elibrary.ru/bgnukh (in Russian)

42. Raspurtin P.G., Zheleznov L.M., Okulova I.I., Mamedova S.M., Kolosov A.E. Experimental evaluation of the influence of whole body vibration on the adrenal cortex. Morfologiya. 2020; 157(2–3): 177. https://elibrary.ru/zlkzbu (in Russian)

43. Rasputin P.G., Zheleznov L.M., Fedorovskaya N.S., Suntsova N.A., Kolotov K.A. Evaluation of the influence of whole body vibration on the state of thymus in the experiment. Morfologiya. 2019; 155(2): 239–40. https://elibrary.ru/nhzrqq (in Russian)


Review

For citations:


Bugaeva M.S., Gorokhova L.G., Yamshchikova A.V., Gostyaeva E.P. Contemporary views on morphological changes in internal organs under vibration exposure (literature review). Hygiene and Sanitation. 2025;104(4):415-421. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-4-415-421. EDN: hvnspg

Views: 164


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)