

Association of the VNTR 4a/4b genetic polymorphism of the eNOS3 gene with arterial hypertension in workers with chronic fluoride intoxication
https://doi.org/10.47470/0016-9900-2025-104-4-483-491
EDN: mkcjdu
Abstract
Introduction. The multiplicity of the factors of the industrial environment, long-term affecting the body in workers in the aluminum industry due to the peculiarities of the technological production of aluminum is related to a high compilation in the air of electrolysis buildings of multi-component suspensions, the predominant of which are fluorides, which have a systemic effect on homeostasis. The development of arterial hypertension is determined by a complex of hemodynamic, neurohormonal, metabolic, and environmental factors associated with individual risk. Mini-satellite NOS3-VNTR, intron 4 of the gene of endothelial nitric oxide synthase is the most important biological mediator, the contribution of which to the development of cardiovascular pathology is undoubtedly high. Evaluation of the early manifestation of hypertension is of priority importance and associated with the definition of genotypes of predisposition / resistance to its development in metallurgists under the conditions of fluoride intoxication.
Materials and methods. One hundred seventy three metallurgists were examined: 92 cases with a proven diagnosis of chronic fluorine intoxication, 81 person with individual signs of fluorine exposure to the skeleton (comparison group). VNTR4 polymorphism of the eNOS3 gene was analyzed using the PCR method, and their relationship with the development of arterial hypertension against the background of chronic fluoride intoxication was assessed.
Results. The associative relationship of the VNT4 polymorphic locus genotypes with fluoride intoxication and concomitant arterial hypertension in non-ferrous metallurgy workers was studied. The distribution of genotypes corresponded to the law of equilibrium populations. Genotype 4a/4a is associated (χ2=9.4810; OR=3.233; p=0.002076) with the development of fluoride intoxication. Homozygote for allele b (4b/4b) is associated with resistance to the studied pathology (χ2=13.5461; OR=0.291; p=0.000233). The level of individual heterozygosity increases: genotype 4a/4b is significantly associated with the development of arterial hypertension against the background of chronic fluoride intoxication (p<0.05).
Limitations. The study is limited by the number of people examined, it is advisable to increase the sample and population control.
Conclusion. The identified genotypes act as markers of the risk of developing hypertension against the background of fluoride intoxication, which makes it possible to recommend genetic testing when forming risk groups to avoid early labour losses in production.
Compliance with ethical standards. The study was approved by the local Ethics Committee of the Research Institute for Complex Problems of Hygiene and Occupational Diseases” (Protocol of the Meeting N 4, § 2 dated November 18, 2021), and was conducted in accordance with the generally accepted scientific principles of the Declaration of Helsinki of the World Medical Association (2013 edition). All participants gave informed voluntary written consent to participate in the study.
Contribution:
Yadykina T.K. – research design, collection and processing of material, statistical analysis, writing the text, editing;
Kazitskaya A.S. – collection and processing of the material;
Gulyaeva O.N. – collection and processing of the material;
Lusina F.A. – collection and processing of the material;
Panev N.I. – collection and processing of clinical data.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Dedication. The article is dedicated to the memory of the scientist-geneticist Nikolay Ismailovich Gafarov, PhD (Biology), head of the population genetics laboratory of the Research Institute for Complex Problems of Hygiene and Occupational Diseases, whose ideas inspired the authors to conduct this study.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: March 6, 2025 / Accepted: March 26, 2025 / Published: April 30, 2025
About the Authors
Tatyana K. YadykinaRussian Federation
PhD (Biology), leading researcher of the Laboratory of molecular-genetic and experimental study, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation
e-mail: yadykina.tanya@yandex.ru
Anastasiya S. Kazitskaya
Russian Federation
PhD (Biology), leading researcher of the Laboratory of molecular-genetic and experimental study, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation
e-mail: anastasiya_kazitskaya@mail.ru
Olga N. Gulyaeva
Russian Federation
Senior researcher of the Laboratory of molecular-genetic and experimental study, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation
e-mail: gulyaich1973@mail.ru
Faina A. Luzina
Russian Federation
PhD (Biology), leading researcher of the Laboratory of molecular-genetic and experimental study, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation
e-mail: luzina45@mail.ru
Nikolay I. Panev
Russian Federation
DSc (Medicine), head of the scientific and clinical Department of occupational medicine, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation
e-mail: panevni@gmail.com
References
1. Izmerov N.F., Kuzmina L.P., Kolyaskina M.M., Lazarashvili N.A. Molecular genetic research in occupational medicine. Gigiena i sanitariya (Hygiene and Sanitation, Russian journal). 2011; 90(5): 10–4. https://elibrary.ru/mweywa (in Russian)
2. Bukhtiyarov I.V., Kuzmina L.P., Golovkova N.P., Chebotarev A.G., Leskina L.M., Kotova N.I., et al. Implementation of the provisions of the methodological platform standards for the assessment and management of occupational health risk for employees. Meditsina truda i promyshlennaya ekologiya. 2022; 62(5): 278–84. https://doi.org/10.31089/1026-9428-2022-62-5-278-284 https://elibrary.ru/bmoial (in Russian)
3. Schwarzkopf N.V. Problems and prospects of development of the aluminum industry in Russia. Epokha nauki. 2020; (23): 146–8. https://doi.org/10.24411/2409-3203-2020-12337 https://elibrary.ru/plcohh (in Russian)
4. Shayakhmetov S.F., Rukavishnikov V.S., Lisetskaya L.G., Merinov A.V. Characteristics of generated aerosol suspensions-complexes at traditional and modernized aluminum electrolysis technologies. Meditsina truda i promyshlennaya ekologiya. 2022; 62(7): 452–8. https://doi.org/10.31089/1026-9428-2022-62-7-452-458 https://www.elibrary.ru/fhqvra (in Russian)
5. Ginter E.K. Evolution of ideas about the genetic nature of multifactorial diseases. Meditsinskaya genetika. 2003; 2(4): 146–56. (in Russian)
6. Zaitseva N.V., Dolgikh O.V., Kostarev V.G., Shirinkina A.S. Genomic and Post-Genomic Technologies for Early Diagnosis of Health Disorders in Workers Associated with Harmful Working Conditions [Genomnye i postgenomnye tekhnologii rannei diagnostiki narushenii zdorov’ya rabotnikov, svyazannykh s vrednymi usloviyami truda]. Perm’; 2022. https://elibrary.ru/bkqnzz (in Russian)
7. Gutor E.M., Zhidkova E.A., Gurevich K.G., Bukhtiyarov I.V., Zibarev E.V., Vostrikova S.M., et al. Some approaches and criteria for assessing the risk of developing occupational diseases. Meditsina truda i promyshlennaya ekologiya. 2023; 63(2): 94–101. https://doi.org/10.31089/1026-9428-2023-63-2-94-101 https://elibrary.ru/xwqzct (in Russian)
8. Karimov D.D., Shaykhlislamova E.R., Mukhammadieva G.F., Karimov D.O., Baigildin S.S., Gizatullina A.A. Polymorphism of cytokine system genes in the pathogenesis of vibration disease in workers of mining and processing enterprises. Gigiena i sanitariya (Hygiene and Sanitation, Russian Journal). 2025; 104(1): 52–7. https://doi.org/10.47470/0016-9900-2025-104-1-52-57 https://elibrary.ru/keodiu (in Russian)
9. Kumar S., Shenoy S., Swamy R.S., Ravichandiran V., Kumar N. Fluoride-induced mitochondrial dysfunction and approaches for its intervention. Biol. Trace Elem. Res. 2024; 202(3): 835–49. https://doi.org/10.1007/s12011-023-03720-1
10. Johnston N.R., Strobel S.A. Principles of fluoride toxicity and the cellular response: a review. Arch. Toxicol. 2020; 94(4): 1051–69. https://doi.org/10.1007/s00204-020-02687-5
11. Budkar L.N., Gurvich V.B., Obukhova T.Yu., Solodushkin S.I., Ilyina M.I., Shmonina O.G. et al. Prediction of Occupational Fluorosis in Aluminum Production Workers in View of Comorbidities. Zdorov’ye naseleniya i sreda obitaniya – ZNiSO. 2023; 31(1): 39–44. https://doi.org/10.35627/2219-5238/2023-31-1-39-44 https://elibrary.ru/gbmicw (in Russian)
12. Obukhova T.Yu., Budkar L.N., Shmonina O.G., Ovchinnikova E.E., Talankina A.A., Kudrina K.S. The impact of cardiovascular and metabolic disease at the time of development of occupational chronic fluoride intoxication in workers of aluminium production. Ural’skii meditsinskii zhurnal. 2018; (10): 66–71. https://doi.org/10.25694/URMJ.2018.10.23 https://elibrary.ru/yphput (in Russian)
13. Mukhamedzhanov R.Sh., Razumov V.V., Lukyanova M.V., Mandrova R.R., Zadorozhnaya M.P. On the cardiomyotropy of fluorides in aluminum production workers. In: Clinical Aspects of Occupational Pathology [Klinicheskie aspekty professional’noi patologii]. Tomsk; 2002: 27–8. https://elibrary.ru/uhezwv (in Russian)
14. Shestakov A.K., Petrov P.A., Nikolaev M.Yu. Automatic system for detecting visible outlets in electrolysis shop of aluminum plant based on technical vision and a neural network. Metallurg. 2022; (10): 105–12. https://doi.org/10.52351/00260827_2022_10_105 https://elibrary.ru/vsobbw (in Russian)
15. Surzhikov D.V., Kislitsyna V.V., Golikov R.A., Likontseva Yu.S., Shtaiger V.A. Assessment of the public health risk caused by exposure to atmospheric emissions from an aluminum plant. Meditsina truda i promyshlennaya ekologiya. 2024; 64(9): 595–602. https://doi.org/10.31089/1026-9428-2024-64-9-595-602 https://elibrary.ru/lkahwz (in Russian)
16. Panev N.I., Korotenko O.Yu., Filimonov S.N., Semenova E.A., Panev R.N. Prevalence of cardiovascular pathology in workers of the aluminum industry. Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 2019; 98(3): 276–9. https://elibrary.ru/zbzdln (in Russian)
17. Gafarov N.I., Zakharchenkov V.V., Yadykina T.K., Kazitskaya A.S., Semenova E.A., Luzina F.A., et al. Genes of xenobiotic metabolism enzymes GSTT1 and GSTM1 in aluminum plant workers with fluorosis. In: Current Issues in Occupational Pathology, Hygiene and Human Ecology. Proceedings of the XLV Scientific and Practical Conference with International Participation and Seminar «Current Issues of Modern Occupational Pathology» [Aktual’nye voprosy profpatologii, gigieny i ekologii cheloveka. Materialy XLV nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem i seminara «Aktual’nye voprosy sovremennoi profpatologii»]. Kemerovo; 2010: 23–5. https://elibrary.ru/smbhkv (in Russian)
18. Babushkina N.P., Buikin S.V., Botkina O.Yu., Markova V.V., Zheikova T.V., Golubenko M.V., et al. Ontogenetic analysis of polymorphism of genes responsible for predisposition to human multifoctorial diseases. Meditsinskaya genetika. 2012; 11(11): 21–31. https://elibrary.ru/tjxicx (in Russian)
19. Chernyak Yu.I., Merinova A.P. Analysis of polymorphic loci of candidate genes in patients with occupational diseases. Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 2023; 102(7): 689–94. https://doi.org/10.47470/0016-9900-2023-102-7-689-694 https://elibrary.ru/glwiya (in Russian)
20. Ostanko V.L., Kalacheva T.P., Kalyuzhina E.V., Livshits I.K., Shalovay A.A., Chernogoryuk G.E., et al. Biological markers in risk stratification and progression of cardiovascular disease: present and future. Byulleten’ sibirskoi meditsiny. 2018; 17(4): 264–80. https://doi.org/10.20538/1682-0363-2018-4-264-280 https://elibrary.ru/mjqssl (in Russian)
21. Bugaeva M.S., Bondarev O.I. Basic intracellular mechanisms of formation of morphological changes of internal organs in fluorosis (literature review). Meditsina v Kuzbasse. 2024; 23(4): 90–6. https://doi.org/10.24412/2687-0053-2024-4-90-96 https://elibrary.ru/jvomwc (in Russian)
22. Gaidash A.A., Apchel V.Ya., Ivchenko E.V. Cardiomyocytes ultrastructure in course of fluorine action. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2016; (2): 138–45. https://elibrary.ru/txpckj (in Russian)
23. Wang J., Yang J., Cheng X., Xiao R., Zhao Y., Xu H., et al. Calcium alleviates fluoride-induced bone damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J. Agric. Food Chem. 2019; 67(39): 10832–43. https://doi.org/10.1021/acs.jafc.9b04295
24. Cicek E., Aydin G., Akdogan M., Okutan H. Effects of chronic ingestion of sodium fluoride on myocardium in a second generation of rats. Hum. Exp. Toxicol. 2005; 24(2): 79–87. https://doi.org/10.1191/0960327105ht505oa
25. Barbier O., Arreola-Mendoza L., Del Razo L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010; 188(2): 319–33. https://doi.org/10.1016/j.cbi.2010.07.011
26. Gumanova N.G. Nitrogen oxide and its circulating NOx metabolites, their role in human body functioning and cardiovascular death risk prediction (Part II). Profilakticheskaya meditsina. 2021; 24(10): 119–25. https://doi.org/10.17116/profmed202124101119 https://elibrary.ru/otgnes (in Russian)
27. Vlasova T.I., Petrishchev N.N., Vlasov T.D. Endothelial dysfunction as the typical pathological state. Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya. 2022; 21(2): 4–15. https://doi.org/10.24884/1682-6655-2022-21-2-4-15 https://elibrary.ru/zheshs (in Russian)
28. Beigel E.A., Kudaeva I.V., Masnavieva L.B. The state of lipid metabolism indicators and the system of peroxidation – antioxidant protection in aluminum production workers with occupational bronchopulmonary pathology. Meditsina truda i promyshlennaya ekologiya. 2023; 63(9): 605–10. https://doi.org/10.31089/1026-9428-2023-63-9-605-610 https://elibrary.ru/fayswf (in Russian)
29. Zhang M.X., Ou H., Shen Y.H., Wang J., Wang J., Coselli J., et al. Regulation of endothelial nitric oxide synthase by small RNA. Proc. Natl. Acad. Sci. USA. 2005; 102(47): 16967–72. https://doi.org/10.1073/pnas.0503853102
30. Stephens J.W., Bain S.C., Humphries S.E. Gene-environment interaction and oxidative stress in cardiovascular disease. Atherosclerosis. 2008; 200(2): 229–38. https://doi.org/10.1016/j.atherosclerosis.2008.04.003
31. Petrishchev N.N. Pathogenetic significance of endothelial dysfunction. Omskii nauchnyi vestnik. 2005; 13(1): 20–2. (in Russian)
32. Grigoryeva N.U., Petrova M.O., Vilkova O.E., Kolosova K.S., Soloveva D.V., Kuznetsova D.S. Molecular and genetic mechanisms of development of coronary heart disease (review). Meditsinskii al’manakh. 2022; (3): 6–20. https://elibrary.ru/ylulks (in Russian)
33. Bragina E.Yu., Goncharova I.A., Zhalsanova I.Zh., Nemerov E.V., Nazarenko M.S., Freidin M.B., et al. Genetic comorbidity of hypertension and bronchial asthma. Arterial’naya gipertenziya. 2022; 28(1): 87–95. https://doi.org/10.18705/1607-419X-2022-28-1-87-95 https://elibrary.ru/qxdomy (in Russian)
34. Kokh N.V., Slepukhina A.A., Lifshits G.I. Arterial hypertension: molecular-genetic and pharmacogenetic approaches. Farmakogenetika i farmakogenomika. 2015; (2): 4-8. https://elibrary.ru/uxqppp (in Russian)
35. Dunai V.I., Glinskaya N.A., Zhuk O.N., Silchenko E.S. Polymorphism of the NOS3 gene of endothelial (NO) nitric oxide synthase as a predictor of the formation of vascular pathologies. Vestnik Polesskogo gosudarstvennogo universiteta. Seriya prirodovedcheskikh nauk. 2024; (1): 56–65. https://elibrary.ru/anbwma (in Russian)
36. Soccio M., Toniato E., Evangelista V., Carluccio M., De Caterina R. Oxidative stress and cardiovascular risk: the role of vascular NAD(P)H oxidase and its genetic variants. Eur. J. Clin. Invest. 2005; 35(5): 305–14. https://doi.org/10.1111/j.1365-2362.2005.01500.x
37. Pavlova O.S., Korobko I.Yu., Nechesova Т.A., Liventseva M.M., Zatoloka N.V., Kovsh E.V., et al. The progression of carotid vascular remodeling risk factors in patients with arterial hypertension. Sistemnye gipertenzii. 2018; 15(3): 32–8. https://elibrary.ru/yakeyx (in Russian)
38. Gamil S., Erdmann J., Abdalrahman I.B., Mohamed A.O. Association of NOS3 gene polymorphisms with essential hypertension in Sudanese patients: a case control study. BMC Med. Genet. 2017; 18(1): 128. https://doi.org/10.1186/s12881-017-0491-7
39. Voronina L.P., Sevostyanova I.V., Polunina O.S. Polymorphism of gene in endothelial nitric synthetase oxynitgoren. Astrakhanskii meditsinskii zhurnal. 2011; 6(2): 47–9. https://elibrary.ru/oxcxod (in Russian)
40. Yasujima M., Tsutaya S., Shoji M. Endothelial nitric oxide synthase gene polymorphism and hypertension. Rinsho Byori. 1998; 46(12): 1199–204. (in Japanese)
41. Miyamoto Y., Saito Y., Kajiyama N., Yoshimura M., Shimasaki Y., Nakayama M., et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension. 1998; 32(1): 3–8. https://doi.org/10.1161/01.hyp.32.1.3
42. Wang Y., Kikuchi S., Suzuki H., Nagase S., Koyama A. Endothelial nitric oxide synthase gene polymorphism in intron 4 affects the progression of renal failure in non-diabetic renal diseases. Nephrol. Dial. Transplant. 1999; 14(12): 2898–902. https://doi.org/10.1093/ndt/14.12.2898
43. Matyar S.S., Attila G., Acartürk E., Akpinar O., Inal T. eNOS gene intron 4 a/b VNTR polymorphism is a risk factor for coronary artery disease in southern Turkey. Clin. Chim. Acta. 2005; 354(1–2): 153–8. https://doi.org/10.1016/j.cccn.2004.11.022
44. Pulkkinen A., Viitanen L., Kareinen A., Lehto S., Vauhkonen I., Laakso M. Intron 4 polymorphism of the endothelial nitric oxide synthase gene is associated with elevated blood pressure in type 2 diabetic patients with coronary heart disease. J. Mol. Med. (Berl.). 2000; 78(7): 372–9. https://doi.org/10.1007/s001090000124
45. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1982.
46. Weir B.S. Genetic Data Analysis: Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer Associates; 1990.
47. Ajuwon O.R., Adeleke T.A., Ajiboye B.O., Lawal A.O., Folorunso I., Brai B., et al. Fermented rooibos tea (Aspalathus linearis) ameliorates sodium fluoride-induced cardiorenal toxicity, oxidative stress, and inflammation via modulation of NF-κB/IκB/IκKB signaling pathway in Wistar rats. Cardiovasc. Toxicol. 2024; 24(3): 240–57. https://doi.org/10.1007/s12012-024-09826-9
48. Kato N., Sugiyama T., Morita H., Nabika T., Kurihara H., Yamori Y., et al. Lack of evidence for association between the endothelial nitric oxide synthase gene and hypertension. Hypertension. 1999; 33(4): 933–6. https://doi.org/10.1161/01.HYP.33.4.933
49. Hoffmann I.S., Tavares-Mordwinkin R., Castejon A.M., Alfieri A.B., Cubeddu L.X. Endothelial nitric oxide synthase polymorphism, nitric oxide production, salt sensitivity and cardiovascular risk factors in Hispanics. J. Hum. Hypertens. 2005; 19(3): 233–40. https://doi.org/10.1038/sj.jhh.1001801
Review
For citations:
Yadykina T.K., Kazitskaya A.S., Gulyaeva O.N., Luzina F.A., Panev N.I. Association of the VNTR 4a/4b genetic polymorphism of the eNOS3 gene with arterial hypertension in workers with chronic fluoride intoxication. Hygiene and Sanitation. 2025;104(4):483-491. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-4-483-491. EDN: mkcjdu