

Use of sensory and analytical methods in hygienic assessment of odour in atmospheric air (literature review)
https://doi.org/10.47470/0016-9900-2025-104-5-554-561
EDN: ogmxfd
Abstract
Odours that affect humans are still not regulated by generally accepted standards, which makes their quantitative measurement difficult due to the peculiarities of perception. This highlights the need for research aimed at developing universal criteria for assessing odours present in the atmospheric air.
The purpose of the work is to generalize and analyze the approaches available in world practice used to assess odours in the environment. The search of literature sources was carried out using the databases Scopus, Web of Science, PubMed, Researchgate, RSCI, elibrary and Google scholar for 1999–2024.
According to the analysis, various approaches to the assessment of ambient air pollution by odorous substances can be divided into three main categories: community engagement, sensory methods, and laboratory chemical analysis. At the same time, no single approach can currently fully solve the problem of measuring and assessing odour in the atmosphere. Sensory methods (odour profiling, field studies, field olfactometry) which reflect real human exposure can lead to inconsistent results due to the significant dependence on the individual perception of the researcher. Chemical analysis methods (such as gas chromatography and mass spectrometry), have greater certainty due to their objectivity, but do not reflect human perception and it is not always possible to associate the identified chemical composition with odour, as well as to take into account the contribution of individual priority odourants. Today, there is an clear need to develop a standard for monitoring odours in atmospheric air, combining all available methods.
Conclusion. Further refinement of measurement tools and the development of a standard approach combining community participation, sensory, and analytical methods should eventually lead to scientifically based quantitative criteria for odour assessment, including established regulations for its content and control in ambient air to minimize harmful impacts in the area of source enterprises.
Contribution:
Budarina O.V. – concept and design of the study, writing the text, editing the article;
Skovronskaya S.A. – collection and processing of the material, editing the article;
Goshin M.E. – collection and processing of the material, editing the article;
Sabirova Z.F. – editing the article.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version
Conflict of interest. The authors declare no conflict of interest.
Funding. The study was carried out within the framework of the state task No. 1023032300263-5-3.3.5.
Received: February 7, 2025 / Revised: February 25, 2025 / Accepted: April 8, 2025 / Published: June 27, 2025
About the Authors
Olga V. BudarinaRussian Federation
DSc (Medicine), chief researcher, Department of Public Health Risk Analysis, Federal Scientific Center of Hygiene named after F.F. Erisman, Mytischi, 141014, Russian Federation
e-mail: budarina.ov@fncg.ru
Svetlana A. Skovronskaya
Russian Federation
PhD (Medicine), senior researcher, Department of Public Health Risk Analysis, Federal Scientific Center of Hygiene named after F.F. Erisman, Mytischi, 141014, Russian Federation
e-mail: sko_sveta@mail.ru
Mikhail E. Goshin
Russian Federation
PhD (Chemistry), senior researcher, Department of Public Health Risk Analysis, Federal Scientific Center of Hygiene named after F.F. Erisman, Mytischi, 141014, Russian Federation
e-mail: Goshin.ME@fncg.ru
Zulfiya F. Sabirova
Russian Federation
DSc (Medicine), leading researcher, Department of Hygiene, Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation
e-mail: ZSabirova@cspmz.ru
References
1. Bokowa A., Diaz C., Koziel J.A., McGinley M., Barclay J., Schauberger G., et al. Summary and overview of the odor regulations worldwide. Atmosphere. 2021; 12(2): 206. https://doi.org/10.3390/atmos12020206
2. Henshaw P., Nicell J., Sikdar A. Parameters for the assessment of odour impacts on communities. Atmospheric Environment. 2006; 40(6): 1016–29. https://doi.org/10.1016/j.atmosenv.2005.11.014
3. Koskinen K., Reichert J.L., Hoier S., Schachenreiter J., Duller S., Moissl-Eichinger C., et al. The nasal microbiome mirrors and potentially shapes olfactory function. Sci. Rep. 2018; 8(1): 1296. https://doi.org/10.1038/s41598-018-19438-3
4. Rawls M., Ellis A.K. The microbiome of the nose. Ann. Allergy Asthma Immunol. 2019; 122(1): 17–24. https://doi.org/10.1016/j.anai.2018.05.009
5. Muñoz R., Sivret E.C., Parcsi G., Lebrero R., Wang X., Suffet I.H., et al. Monitoring techniques for odour abatement assessment. Water Res. 2010; 44(18): 5129–49. https://doi.org/10.1016/j.watres.2010.06.013
6. Jinks A., Laing D.G. The analysis of odor mixtures by humans: evidence for a configurational process. Physiol. Behav. 2001; 72(1–2): 51–63. https://doi.org/10.1016/s0031-9384(00)00407-8
7. Good practices guide for odour management in Alberta: From prevention and mitigation to assessment and complaints. Clean Air Strategic Alliance (CASA); 2015. Available at: https://casahome.org/uploads/source/PDF/CASA_GPG_webversion_V3.pdf
8. Odour guideline for prescribed premises. Draft. Perth: Department of Water and Environmental Regulation, Government of Western Australia; 2018. Available at: https://der.wa.gov.au/images/documents/our-work/consultation/OdourGuideline/17-01-2018_Odour_GdL_external_consult.pdf
9. Gallego E., Soriano C., Roca F.X., Perales J.F., Alarcón M., Guardino X. Identification of the origin of odour episodes through social participation, chemical control and numerical modelling. Atmospheric Environment. 2008; 42(35): 8150–60. https://doi.org/10.1016/j.atmosenv.2008.08.004
10. Curren J., Hallis S.A., Snyder C.C.L., Suffet I.M.H. Identification and quantification of nuisance odors at a trash transfer station. Waste Manag. 2016; 58: 52–61. https://doi.org/10.1016/j.wasman.2016.09.021
11. Brancher M., Griffiths K.D., Franco D., de Melo Lisboa H. A review of odour impact criteria in selected countries around the world. Chemosphere. 2017; 168: 1531–70. https://doi.org/10.1016/j.chemosphere.2016.11.160
12. Hayes J.E., Stevenson R.J., Stuetz R.M. The impact of malodour on communities: a review of assessment techniques. Sci. Total. Environ. 2014; 500–1: 395–407. https://doi.org/10.1016/j.scitotenv.2014.09.003
13. Eykelbosh A., Maher R., Monticelli D.F., Ramkairsingh A., Henderson S., Giang A., et al. Elucidating the community health impacts of odours using citizen science and mobile monitoring. Environ. Health Rev. 2021; 64(2): 24–7. https://doi.org/10.5864/d2021-010
14. Yang W., Li W., Zhang Y., Han M., Zhai Z., Cui H. Exposure-response relationship and chemical characteristics of atmospheric odor pollution from a cigarette factory. Aerosol Air Qual. Res. 2021; 22(6): 210314. https://doi.org/10.4209/aaqr.210314
15. Brancher M., De Melo Lisboa H. Odour impact assessment by community survey. Chem. Eng. Trans. 2014; 40: 139–44. https://doi.org/10.3303/CET1440024
16. Zarra T., Belgiorno V., Naddeo V. Environmental odour nuisance assessment in urbanized area: analysis and comparison of different and integrated approaches. Atmosphere. 2021; 12(6): 690. https://doi.org/10.3390/atmos12060690
17. Effects and assessment of odours. Assessment of odour annoyance. Questionnaires. VDI 3883 – Part 1; 2015.
18. Sazakli E., Leotsinidis M. Odor nuisance and health risk assessment of VOC emissions from a rendering plant. Air Qual. Atmos. Health. 2021; 14(3): 301–12.
19. Hirasawa Y., Shirasu M., Okamoto M., Touhara K. Subjective unpleasantness of malodors induces a stress response. Psychoneuroendocrinology. 2019; 106: 206–15. https://doi.org/10.1016/j.psyneuen.2019.03.018
20. Hoenen M., Wolf O.T., Pause B.M. The impact of stress on odor perception. Perception. 2017; 46(3-4): 366–76. https://doi.org/10.1177/0301006616688707
21. Sironi S., Capelli L., Céntola P., Del Rosso R., Pierucci S. Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation. Atmos. Environ. 2010; 44(3): 354–60. https://doi.org/10.1016/J.ATMOSENV.2009.10.029
22. Gostelow P., Longhurst P., Parsons S.A., Stuetz R.M. Sampling for measurement of odours. IWA Publishing, Scientific and Technical Report. London; 2003. https://doi.org/10.2166/9781780402819
23. Jiang J., Coffey P., Toohey B. Improvement of odor intensity measurement using dynamic olfactometry. J. Air Waste Manag. Assoc. 2006; 56(5): 675–83. https://doi.org/10.1080/10473289.2006.10464474
24. Burlingame G.A. Odor profiling of environmental odors. Water Sci. Technol. 1999; 40(6): 31–8. https://doi.org/10.1016/s0273-1223(99)00534-x
25. Burlingame G.A. A practical framework using odor survey data to prioritize nuisance odors. Water Sci. Technol. 2009; 59(3): 595–602. https://doi.org/10.2166/wst.2009.872
26. Poupon D., Fernandez P., Archambault Boisvert S., Migneault-Bouchard C., Frasnelli J. Can the identification of odorants within a mixture be trained? Chem. Senses. 2018; 43(9): 721–6. https://doi.org/10.1093/chemse/bjy060
27. Suffet I.M., Braithwaite S., Zhou Y., Bruchet A. Chapter 2: The drinking water taste-and-odour wheel after 30 years. In: Taste and Odour in Source and Drinking Water: Causes, Controls, and Consequences. IWA Publishing; 2019. https://doi.org/10.2166/9781780406664_0011
28. Braithwaite S. Sensory analysis and health risk assessment of environmental odors: Ph.D. thesis. Los Angeles; 2019. Available at: https://escholarship.org/uc/item/21g660d3
29. Walgraeve C., Van Huffel K., Bruneel J., Van Langenhove H. Evaluation of the performance of field olfactometers by selected ion flow tube mass spectrometry. Biosyst. Eng. 2015; 137: 84–94.
30. European Committee for Standardization CEN. Ambient Air – Determination of Odour in Ambient Air by Using Field Inspection – Part 1: Grid Method. Brussels; 2016.
31. European Committee for Standardization CEN. Ambient Air – Determination of Odour in Ambient Air by Using Field Inspection – Part 2: Plume Method. Brussels; 2016.
32. Schiffman S.S., Bennett J.L., Raymer J.H. Quantification of odors and odorants from swine operations in North Carolina. Agric. For. Meteorol. 2001; 108(3): 213–40. https://doi.org/10.1016/S0168-1923(01)00239-8
33. Van Huffel K., Heynderickx P.M., Dewulf J., Van Langenhove H. Measurement of odorants in livestock buildings: SIFT-MS and TD-GC-MS. Chem. Eng. 2012; 30: 67–72. https://doi.org/10.3303/cet1230012
34. Volckaert D., Heynderickx P.M., Van Langenhove H. Online SIFT-MS measurement of a biofilter response to dimethylsulfide concentration step changes; 2013. Available at: https://biblio.ugent.be/publication/4091705/
35. Langford V., McEwan M., Askey M., Barnes H., Olerenshaw J. Comprehensive instrumental odor analysis using SIFT-MS: A case study. Environments. 2018; 5(4): 43. https://doi.org/10.3390/environments5040043
36. Hera D., Langford V., McEwan M., McKellar T., Milligan D. Negative reagent ions for real time detection using SIFT-MS. Environments. 2017; 4(1): 16. https://doi.org/10.3390/environments4010016
37. Brattoli M., Cisternino E., Dambruoso P.R., de Gennaro G., Giungato P., Mazzone A., et al. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors (Basel). 2013; 13(12): 16759–800. https://doi.org/10.3390/s131216759
38. Molecular laboratory capabilities. Centre of Competence – Molecular Odour Evaluation (MOE). Sensenet; 2018. Available at: https://sensenet.net/wp-content/uploads/2018/10/SENSENET-Workshop-Rennes-2018-PM.pdf
39. Ryan D., Prenzler P.D., Saliba A.J., Scollary G.R. The significance of low impact odorants in global odour perception. Trends Food Sci. Technol. 2008; 19(7): 383–9. https://doi.org/10.1016/j.tifs.2008.01.007
40. Vitko T.G. How to boil down OCSD’s odor control master plan into one page. Proc. Water Environ. Fed. 2018; 2018(2): 205–25.
41. Sauerwald T., Baur T., Leidinger M., Reimringer W., Spinelle L., Gerboles M., et al. Highly sensitive benzene detection with metal oxide semiconductor gas sensors – an inter-laboratory comparison. J. Sensors Sensor Syst. 2018; 7(1): 235–43. https://doi.org/10.5194/jsss-7-235-2018
42. Boeker P. On ‘electronic nose’ methodology. Sensors Actuat. B Chem. 2014; 204: 2–17. https://doi.org/10.1016/j.snb.2014.07.087
43. Dentoni L., Capelli L., Sironi S., Del Rosso R., Zanetti S., Della Torre M. Development of an electronic nose for environmental odour monitoring. Sensors (Basel). 2012; 12(11): 14363–81. https://doi.org/10.3390/s121114363
44. Schütze A., Baur T., Leidinger M., Reimringer W., Jung R., Conrad T., et al. Highly sensitive and selective VOC sensor systems based on semiconductor gas sensors: How to? Environments. 2017; 4(1): 20. https://doi.org/10.3390/environments4010020
45. Guillot J.M. E-noses: Actual limitations and perspectives for environmental odour analysis. Chem. Eng. Trans. 2016; 54: 223–8.
46. Keller A., Gerkin R.C., Guan Y., Dhurandhar A., Turu G., Szalai B., et al. Predicting human olfactory perception from chemical features of odor molecules. Science. 2017; 355(6327): 820–6. https://doi.org/10.1126/science.aal2014
47. Deshmukh S., Bandyopadhyay R., Bhattacharyya N., Pandey R.A., Jana A. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring – an overview. Talanta. 2015; 144: 329–40. https://doi.org/10.1016/j.talanta.2015.06.050
48. WHO. Air quality guidelines for Europe, 2nd edition. Copenhagen; 2000.
49. Freeman T., Cudmore R. Review of odour management in New Zealand. Air Quality Technical Report No. 24. Wellington; 2002. Available at: https://environment.govt.nz/assets/Publications/Files/odour-tr-aug02.pdf
50. Lötsch J., Kringel D., Hummel T. Machine learning in human olfactory research. Chem. Senses. 2019; 44(1): 11–22. https://doi.org/10.1093/chemse/bjy067
51. Budarina O.V. Scientific substantiation of modern hygienic bases of rationing, control and evaluation of odour in the atmospheric air of populated areas: Diss. Moscow; 2020. https://elibrary.ru/gfxxuy (in Russian)
52. Kiselev A.V., Grigoreva Ya.V. Application of the results of calculation of atmospheric air pollution for social and hygienic monitoring. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2017; 96(4): 306–9. https://elibrary.ru/ykuqhr (in Russian)
53. Karelin A.O., Lomtev A.Yu., Friedman K.B., Yeremin G.B., Pankin A.V. Identification of emission sources of pollutants causing complaints of unpleasant odours. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2019; 98(6): 601–7. https://elibrary.ru/cebqhl (in Russian)
54. Zaitseva N.V., May I.V., Kiryanov D.A., Kleyn S.V., Chigvintsev V.M., Klyachin A.A. Methodical approaches to spatial identification of probable sources of obnoxious odors in ambient air based on fuzzy logic. Analiz riska zdorov’yu. 2024; (4): 1–26. https://doi.org/10.21668/health.risk/2024.4.02 https://elibrary.ru/jtjhme (in Russian)
55. Makovetskaya A.K., Khripach L.V., Goshin M.E., Budarina O.V., Karmanov A.V. The role of sociological methods in implementation of environmental hygienic health monitoring for territories. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2023; 102(9): 902–8. https://doi.org/10.47470/0016-9900-2023-102-9-902-908 https://elibrary.ru/qplnzf (in Russian)
56. Budarina O.V., Sabirova Z.F., Skovronskaya S.A., Dodina N.S., Kokhan A.A., Malysheva A.G. Comprehensive hygienic assessment of ambient air pollution in the area of food and processing industry enterprises’ location. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2024; 103(3): 198–207. https://doi.org/10.47470/0016-9900-2024-103-3-198-207 https://elibrary.ru/dkrspg (in Russian)
Review
For citations:
Budarina O.V., Skovronskaya S.A., Goshin M.E., Sabirova Z.F. Use of sensory and analytical methods in hygienic assessment of odour in atmospheric air (literature review). Hygiene and Sanitation. 2025;104(5):554-561. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-5-554-561. EDN: ogmxfd