Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Formation of biofilms on microplastics in the food chain and their role as vectors of transfer of foodborne pathogens (literature review, part 2)

https://doi.org/10.47470/0016-9900-2025-104-5-621-630

EDN: cbmqdz

Abstract

The first part of the review, “Microbial risks associated with microplastics in the food chain and possible control measures”, examined the pathways by which microplastics enter the human digestive tract and mechanisms of their adverse effects mediated by interactions with the microbiota and the intestinal mucosal barrier.

This part of the review is devoted to the mechanism of microbial biofilm forming directly contacting wth the the mucin layer of the mucosa, formed on micro- and nanoplastics, and their role as vectors of transfer of pathogenic microorganisms, their toxins, and genes of transmissible antimicrobial resistance. It is shown that the surfaces of micro- and nanoplastic particles in various objects of the food chain can serve as an adhesive framework for bacteria, microalgae, viruses, a number of micromycetes, as well as low molecular weight microbial metabolites and other biomolecules. It is noted that in associations of micro- and nanoplastics with bacteria, protozoa, and microalgae, among which there may be pathogens of food toxic infections and invasions, the functional properties of the latter change, virulence often increases, as well as elevates antimicrobial resistance due to the fixing effect of biofilm and better survival of microorganisms in the presence of nutrient substrate in the so-called “protein crown” (inner layer of biofilm). It is emphasized that bacteria possessing mucolytic and proteolytic enzymes, in particular, representatives of the genus Vibrio and Pseudomonadaceae, are particularly active in biofilms, which aggravates the share of these pathogens in the structure of modern acute intestinal infections and food poisoning. Examples are given that ingestion of such complexes in the human gastrointestinal tract can cause an abnormally acute response of the mucosal immune system, which in turn can be a trigger factor of the polyclonal response underlying atopy. The data on the possibility of microplastic biofilms contaminating fish and seafood, primarily obtained in aqua- and mariculture, toxins of cyanobacteria dangerous for humans in low doses are presented.

Taking into account the described nature of microbiological risks associated with contamination of foodstuffs and other objects of the food chain with micro- and nanoplastic particles associated with microbial biofilms and the reality of direct and indirect harm to human health caused by them, the review formulates the necessity of substantiation of preventive countermeasures and consumer protection, and gives specific examples of their implementation in the food industry.

Contribution:
Markova Yu.M., Smotrina Yu.V. – data collection and processing, writing text, editing;
Bykova I.B., Polyanina A.S., Stetsenko V.V. – data collection and processing;
Efimochkina N.R. – writing text, editing;
Sheveleva S.A. – conception of the study, writing text, editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. This work was carried out within the framework of the Program of Fundamental Scientific Research project of the Ministry of science and higher education of the Russian Federation No FGMF-2023-0005.

Received: November 15, 2024 / Revised: March 7, 2025 / Accepted: March 26, 2025 / Published: June 27, 2025

About the Authors

Yulia M. Markova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Senior researcher at the Laboratory of Biosafety and Nutrimicrobiome Analysis of Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation

e-mail: yulia.markova.ion@gmail.com



Yulia V. Smotrina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Researcher at the Laboratory of Biosafety and Nutrimicrobiome Analysis of Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation



Irina B. Bykova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Junior Researcher at the Laboratory of Biosafety and Nutrimicrobiome Analysis of Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation



Anna S. Polyanina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Researcher at the Laboratory of Biosafety and Nutrimicrobiome Analysis of Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation



Valentina V. Stetsenko
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Junior Researcher at the Laboratory of Biosafety and Nutrimicrobiome Analysis of Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation



Natalya R. Efimochkina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

DSc (Biology), Deputy director for scientific work of Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation



Svetlana A. Sheveleva
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

DSc (Medicine), Head of the Laboratory of Biosafety and Nutrimicrobiome of Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, 109240, Russian Federation

e-mail: sheveleva@ion.ru



References

1. Kwon D. Three ways to solve the plastics pollution crisis. Nature. 2023; 616(7956): 234–7. https://doi.org/10.1038/d41586-023-00975-5

2. Parrish K., Fahrenfeld N.L. Microplastic biofilm in fresh-and wastewater as a function of microparticle type and size class. Environ. Sci.: Water Res. Technol. 2019; 5(3): 495–505. https://doi.org/10.1039/C8EW00712H

3. Wang L., Tong J., Li Y., Zhu J., Zhang W., Niu L., et al. Bacterial and fungal assemblages and functions associated with biofilms differ between diverse types of plastic debris in a freshwater system. Environ. Res. 2021; 196: 110371. https://doi.org/10.1016/j.envres.2020.110371

4. Mazaheri T., Cervantes-Huamán B.R.H., Bermúdez-Capdevila M., Ripolles-Avila C., Rodríguez-Jerez J.J. Listeria monocytogenes biofilms in the food industry: is the current hygiene program sufficient to combat the persistence of the pathogen? Microorganisms. 2021; 9(1): 181. https://doi.org/10.3390/microorganisms9010181

5. Carrascosa C., Raheem D., Ramos F., Saraiva A., Raposo A. Microbial biofilms in the food industry – a comprehensive review. Int. J. Environ. Res. Public Health. 2021; 18(4): 2014. https://doi.org/10.3390/ijerph18042014

6. Merino L., Procura F., Trejo F.M., Bueno D.J., Golowczyc M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res. Int. 2019; 119: 530–40. https://doi.org/10.1016/j.foodres.2017.11.024

7. Jahid I.K., Ha S.D. The paradox of mixed‐species biofilms in the context of food safety. Compr. Rev. Food Sci. Food Saf. 2014; 13(5): 990–1011. https://doi.org/10.1111/1541-4337.12087

8. Li L., Mendis N., Trigui H., Oliver J.D., Faucher S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014; 5: 258. https://doi.org/10.3389/fmicb.2014.00258

9. Kim J.S., Chowdhury N., Yamasaki R., Wood T.K. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol. 2018; 20(6): 2038–48. https://doi.org/10.1111/1462-2920.14075

10. Hussain K.A., Romanova S., Okur I., Zhang D., Kuebler J., Huang X., et al. Assessing the release of microplastics and nanoplastics from plastic containers and reusable food pouches: implications for human health. Environ. Sci. Technol. 2023; 57(26): 9782–92. https://doi.org/10.1021/acs.est.3c01942

11. Yadav H., Khan M.R.H., Quadir M., Rusch K.A., Mondal P.P., Orr M., et al. Cutting boards: an overlooked source of microplastics in human food? Environ. Sci. Technol. 2023; 57(22): 8225–35. https://doi.org/10.1021/acs.est.3c00924

12. Tavelli R., Callens M., Grootaert C., Abdallah M.F., Rajkovic A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends Food Sci. Technol. 2022; 129(11): 1–10. https://doi.org/10.1016/j.tifs.2022.08.021

13. Cocca M., Di Pace E., Errico M.E., Gentile G., Montarsolo A., Mossotti R., et al. Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea. Springer Nature; 2020: 112–20.

14. Murphy L., Germaine K., Dowling D.N., Kakouli-Duarte T., Cleary J. Association of potential human pathogens with microplastics in freshwater systems. In: Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea. Springer Nature; 2020: 112–20. https://doi.org/10.1007/978-3-030-45909-3_19

15. Nowak J., Visnovsky S.B., Pitman A.R., Cruz C.D., Palmer J., Fletcher G.C., et al. Biofilm formation by Listeria monocytogenes 15G01, a persistent isolate from a seafood-processing plant, is influenced by inactivation of multiple genes belonging to different functional groups. Appl. Environ. Microbiol. 2021; 87(10): e02349–20. https://doi.org/10.1128/AEM.02349-20

16. Schmid P.J., Maitz S., Kittinger C. Bacillus cereus in packaging material: molecular and phenotypical diversity revealed. Front. Microbiol. 2021; 12: 698974. https://doi.org/10.3389/fmicb.2021.698974

17. Olanbiwoninu A.A., Popoola B.M. Biofilms and their impact on the food industry. Saudi J. Biol. Sci. 2023; 30(2): 103523. https://doi.org/10.1016/j.sjbs.2022.103523

18. Wagner E.M., Pracser N., Thalguter S., Fischel K., Rammer N., Pospíšilová L., et al. Identification of biofilm hotspots in a meat processing environment: Detection of spoilage bacteria in multi-species biofilms. Int. J. Food Microbiol. 2020; 328: 108668. https://doi.org/10.1016/j.ijfoodmicro.2020.108668

19. Wu X., Pan J., Li M., Li Y., Bartlam M., Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019; 165: 114979. https://doi.org/10.1016/j.watres.2019.114979

20. Pham D.N., Clark L., Li M. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. J. Hazard. Mater. Lett. 2021; 2: 100014. https://doi.org/10.1016/j.hazl.2021.100014

21. Gallego-Hernandez A.L., DePas W.H., Park J.H., Teschler J.K., Hartmann R., Jeckel H., et al. Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. Proc. Natl. Acad. Sci. USA. 2020; 117(20): 11010–7. https://doi.org/10.1073/pnas.1916571117

22. Zhang Y., Wu Q., Forsythe S., Liu C., Chen N., Chengcheng L., et al. The cascade regulation of small RNA and quorum sensing system: Focusing on biofilm formation of foodborne pathogens in food industry. Food Bioscience. 2023; 52(11): 102472. https://doi.org/10.1016/j.fbio.2023.102472

23. Moyal J., Dave P.H., Wu M., Ghannadi S.K., Brar S.K., Zhong H., et al. Impacts of biofilm formation on the physicochemical properties and toxicity of microplastics: a concise review. Rev. Environ. Contam. Toxicol. 2023; 261(1): 8. https://doi.org/10.1007/s44169-023-00035-z

24. He S., Jia M., Xiang Y., Song B., Xiong W., Cao J., et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 2022; 424(Pt. B): 127286. https://doi.org/10.1016/j.jhazmat.2021.127286

25. Song F., Koo H., Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res. 2015; 94(8): 1027–34. https://doi.org/10.1177/0022034515587690

26. Zheng S., Bawazir M., Dhall A., Kim H.E., He L., Heo J., et al. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 2021; 9: 643722. https://doi.org/10.3389/fbioe.2021.643722

27. Zhu X., Jańczewski D., Guo S., Lee S.S., Parra Velandia F.J., Teo S.L., et al. Polyion multilayers with precise surface charge control for antifouling. ACS Appl. Mater. Interfaces. 2015; 7(1): 852–61. https://doi.org/10.1021/am507371a

28. Guo S., Kwek M.Y., Toh Z.Q., Pranantyo D., Kang E.T., Loh X.J., et al. Tailoring polyelectrolyte architecture to promote cell growth and inhibit bacterial adhesion. ACS Appl. Mater. Interfaces. 2018; 10(9): 7882–91. https://doi.org/10.1021/acsami.8b00666

29. De-la-Pinta I., Cobos M., Ibarretxe J., Montoya E., Eraso E., Guraya T., et al. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. Mater. Med. 2019; 30(7): 77. https://doi.org/10.1007/s10856-019-6281-3

30. Saeki D., Nagashima Y., Sawada I., Matsuyama H. Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids Surf. A: Physicochem. Eng. Asp. 2016; 506: 622–8. https://doi.org/10.1016/j.colsurfa.2016.07.036

31. Yuan Y., Hays M.P., Hardwidge P.R., Kim J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Advances. 2017; 7(23): 14254–61. https://doi.org/10.1039/C7RA01571B

32. Schwibbert K., Menzel F., Epperlein N., Bonse J., Krüger J. Bacterial adhesion on femtosecond laser-modified polyethylene. Materials (Basel). 2019; 12(19): 3107. https://doi.org/10.3390/ma12193107

33. Rummel C.D., Lechtenfeld O.J., Kallies R., Benke A., Herzsprung P., Rynek R., et al. Conditioning film and early biofilm succession on plastic surfaces. Environ. Sci. Technol. 2021; 55(16): 11006–18. https://doi.org/10.1021/acs.est.0c07875

34. Bhagwat G., O’Connor W., Grainge I., Palanisami T. Understanding the fundamental basis for biofilm formation on plastic surfaces: role of conditioning films. Front. Microbiol. 2021; 12: 687118. https://doi.org/10.3389/fmicb.2021.687118

35. Wu C., Tanaka K., Tani Y., Bi X., Liu J., Yu Q. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. Sci. Total. Environ. 2022; 821: 153265. https://doi.org/10.1016/j.scitotenv.2022.153265

36. Ayush P.T., Ko J.H., Oh H.S. Characteristics of initial attachment and biofilm formation of pseudomonas aeruginosa on microplastic surfaces. Appl. Sci. 2022; 12(10): 5245. https://doi.org/10.3390/app12105245 https://elibrary.ru/cryaon

37. Nguyen Trang P., Thi Anh Ngoc T., Masuda Y., Hohjoh K.I., Miyamoto T. Biofilm formation from Listeria monocytogenes isolated from pangasius fish-processing plants. J. Food Prot. 2023; 86(3): 100044. https://doi.org/10.1016/j.jfp.2023.100044

38. Rodrigues L.B., Webber B., Levandowski R., Gehlen S.S., Santos L.R.D., Pilotto F., et al. Biofilm formation by Salmonella enteritidis at different incubation temperatures. Acta Scientiae Veterinariae. 2018; 47(1): 1654. https://doi.org/10.22456/1679-9216.89414

39. Slettengren M., Mohanty S., Kamolvit W., van der Linden J., Brauner A. Making medical devices safer: impact of plastic and silicone oil on microbial biofilm formation. J. Hosp. Infect. 2020; 106(1): 155–62. https://doi.org/10.1016/j.jhin.2020.07.011

40. Microbiological aspects of food hygiene. Report of a WHO Expert Committee with the participation of FAO. World Health Organ. Tech. Rep. Ser. 1976; (598): 1–103.

41. Cholewińska P., Moniuszko H., Wojnarowski K., Pokorny P., Szeligowska N., Dobicki W., et al. The occurrence of microplastics and the formation of biofilms by pathogenic and opportunistic bacteria as threats in aquaculture. Int. J. Environ. Res. Public Health. 2022; 19(13): 8137. https://doi.org/10.3390/ijerph19138137

42. Du F., Cai H., Zhang Q., Chen Q., Shi H. Microplastics in take-out food containers. J. Hazard. Mater. 2020; 399: 122969. https://doi.org/10.1016/j.jhazmat.2020.122969

43. Jiang C., Almuhtaram H., McKie M.J., Andrews R.C. Assessment of biofilm growth on microplastics in freshwaters using a passive flow-through system. Toxics. 2023; 11(12): 987. https://doi.org/10.3390/toxics11120987

44. Yi X., Li W., Liu Y., Yang K., Wu M., Zhou H. Effect of polystyrene microplastics of different sizes to Escherichia coli and Bacillus cereus. Bull. Environ. Contam. Toxicol. 2021; 107(4): 626–32. https://doi.org/10.1007/s00128-021-03215-6

45. Cox K.D., Covernton G.A., Davies H.L., Dower J.F., Juanes F., Dudas S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019; 53(12): 7068–74. https://doi.org/10.1021/acs.est.9b01517

46. Jiang P., Zhao S., Zhu L., Li D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci. Total. Environ. 2018; 624: 48–54. https://doi.org/10.1016/j.scitotenv.2017.12.105

47. Kelly J.J., London M.G., Oforji N., Ogunsola A., Hoellein T.J. Microplastic selects for convergent microbiomes from distinct riverine sources. Freshw. Sci. 2020; 39(2): 281–91. https://doi.org/10.1086/708934

48. Gölz G., Kittler S., Malakauskas M., Alter T. Survival of campylobacter in the food chain and the environment. Curr. Clin. Microbiol. Rep. 2018; 5(2): 126–34. https://doi.org/10.1007/s40588-018-0092-z https://elibrary.ru/tlhzhv

49. Bowley J., Baker-Austin C., Porter A., Hartnell R., Lewis C. Oceanic hitchhikers – assessing pathogen risks from marine microplastic. Trends. Microbiol. 2021; 29(2): 107–16. https://doi.org/10.1016/j.tim.2020.06.011

50. da Silva R.T., de Souza Grilo M.M., Pimentel T.C., de Lucena F.A., Schaffner D.W., de Souza Pedrosa G.T., et al. An overview of foodborne viruses and SARS-CoV-2 in foods and food-contact surfaces: survival, transfer, surrogates use, and mathematical modeling. Curr. Opin. Food Sci. 2024; 55: 101119. https://doi.org/10.1016/j.cofs.2023.101119

51. Khan A., Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience. 2023; 26(2): 106061. https://doi.org/10.1016/j.isci.2023.106061

52. Thomas S.G., Glover M.A., Parthasarathy A., Wong N.H., Shipman P.A., Hudson A.O. Expression of a Shiga-like toxin during plastic colonization by two multidrug-resistant bacteria, Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669, isolated from endangered turtles (Clemmys guttata). Microorganisms. 2020; 8(8): 1172. https://doi.org/10.3390/microorganisms8081172

53. Tong X., Li B., Li J., Li L., Zhang R., Du Y., et al. Polyethylene microplastics cooperate with Helicobacter pylori to promote gastric injury and inflammation in mice. Chemosphere. 2022; 288(Pt. 2): 132579. https://doi.org/10.1016/j.chemosphere.2021.132579

54. Maruzani R., Sutton G., Nocerino P., Marvasi M. Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. J. Microbiol. 2019; 57(1): 1–8. https://doi.org/10.1007/s12275-019-8353-y

55. FAO. Assessment of agricultural plastics and their sustainability – a call for action. Rome; 2021.

56. Zhang Y., Lu J., Wu J., Wang J., Luo Y. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol. Environ. Saf. 2020; 187: 109852. https://doi.org/10.1016/j.ecoenv.2019.109852

57. Lu J., Zhang Y., Wu J., Luo Y. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system. Ecotoxicol. Environ. Saf. 2019; 184: 109631. https://doi.org/10.1016/j.ecoenv.2019.109631

58. Wang Y., Wang X., Li Y., Li J., Wang F., Xia S., et al. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chem. Eng. J. 2020; 392: 123808. https://doi.org/10.1016/j.cej.2019.123808

59. Yang Y., Liu G., Song W., Ye C., Lin H., Li Z., et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ. Int. 2019; 123: 79–86. https://doi.org/10.1016/j.envint.2018.11.061

60. Wang S., Xue N., Li W., Zhang D., Pan X., Luo Y. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Sci. Total. Environ. 2020; 708: 134594. https://doi.org/10.1016/j.scitotenv.2019.134594

61. Chen C.Q., Zheng L., Zhou J.L., Zhao H. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China. Sci. Total. Environ. 2017; 580: 1175–84. https://doi.org/10.1016/j.scitotenv.2016.12.075

62. Imran M., Das K.R., Naik M.M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere. 2019; 215: 846–57. https://doi.org/10.1016/j.chemosphere.2018.10.114

63. Khare T., Mathur V., Kumar V. Agro-ecological microplastics enriching the antibiotic resistance in aquatic environment. Curr. Opin. Environ. Sci. Health. 2024; 37: 100534. https://doi.org/10.1016/j.coesh.2024.100534 https://elibrary.ru/ipftsk

64. Frias J.PG.L., Nash R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019; 138: 145–7. https://doi.org/10.1016/j.marpolbul.2018.11.022

65. Gigault J., Halle A.T., Baudrimont M., Pascal P.Y., Gauffre F., Phi T.L., et al. Current opinion: what is a nanoplastic? Environ. Pollut. 2018; 235: 1030–4. https://doi.org/10.1016/j.envpol.2018.01.024

66. Bartkova S., Kahru A., Heinlaan M., Scheler O. Techniques used for analyzing microplastics, antimicrobial resistance and microbial community composition: a mini-review. Front. Microbiol. 2021; 12: 603967. https://doi.org/10.3389/fmicb.2021.603967

67. Arias-Andres M., Klümper U., Rojas-Jimenez K., Grossart H.P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 2018; 237: 253–61. https://doi.org/10.1016/j.envpol.2018.02.058

68. Hossain M.R., Jiang M., Wei Q., Leff L.G. Microplastic surface properties affect bacterial colonization in freshwater. J. Basic Microbiol. 2019; 59(1): 54–61. https://doi.org/10.1002/jobm.201800174

69. Jonkman J., Brown C.M., Wright G.D., Anderson K.I., North A.J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 2020; 15(5): 1585–611. https://doi.org/10.1038/s41596-020-0313-9

70. Pathak A., Jaswal R., Chauhan A. Genomic characterization of a mercury resistant Arthrobacter sp. H-02-3 reveals the presence of heavy metal and antibiotic resistance determinants. Front. Microbiol. 2020; 10: 3039. https://doi.org/10.3389/fmicb.2019.03039

71. Stevenson E.M., Buckling A., Cole M., Lindeque P.K., Murray A.K. Culturing the Plastisphere: comparing methods to isolate culturable bacteria colonising microplastics. Front. Microbiol. 2023; 14: 1259287. https://doi.org/10.3389/fmicb.2023.1259287

72. Yu T., Ma M., Sun Y., Xu X., Qiu S., Yin J., et al. The effect of sublethal concentrations of benzalkonium chloride on the LuxS/AI-2 quorum sensing system, biofilm formation and motility of Escherichia coli. Int. J. Food Microbiol. 2021; 353: 109313. https://doi.org/10.1016/j.ijfoodmicro.2021.109313

73. Zhu T., Yang C., Bao X., Chen F., Guo X. Strategies for controlling biofilm formation in food industry. Grain Oil Sci. Technol. 2022; 5(4): 179–86. https://doi.org/10.1016/j.gaost.2022.06.003

74. Nahar S., Jeong H.L., Kim Y., Ha A.J., Roy P.K., Park S.H., et al. Inhibitory effects of Flavourzyme on biofilm formation, quorum sensing, and virulence genes of foodborne pathogens Salmonella Typhimurium and Escherichia coli. Food Res. Int. 2021; 147: 110461. https://doi.org/10.1016/j.foodres.2021.110461

75. Ganesh P.S., Vittal R.R. In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical fluid CO₂ method against Pseudomonas aeruginosa PAO1. Nat. Prod. Res. 2015; 29(24): 2295–8. https://doi.org/10.1080/14786419.2015.1004673

76. Vázquez-Sánchez D., Cabo M.L., Rodríguez-Herrera J.J. Antimicrobial activity of essential oils against Staphylococcus aureus biofilms. Food Sci. Technol. Int. 2015; 21(8): 559–70. https://doi.org/10.1177/1082013214553996

77. Hakimi Alni R., Ghorban K., Dadmanesh M. Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech. 2020; 10(7): 315. https://doi.org/10.1007/s13205-020-02286-2

78. Kaur A., Soni S.K., Vij S., Rishi P. Cocktail of carbohydrases from Aspergillus niger: an economical and eco-friendly option for biofilm clearance from biopolymer surfaces. AMB Express. 2021; 11(1): 22. https://doi.org/10.1186/s13568-021-01183-y

79. Salisbury A.M., Mullin M., Foulkes L., Chen R., Percival S.L. The ability of a concentrated surfactant gel to reduce an aerobic, anaerobic and multispecies bacterial biofilm in vitro. Adv. Exp. Med. Biol. 2021; 1323: 149–57. https://doi.org/10.1007/5584_2020_609

80. Kuyukina M.S., Ivshina I.B., Korshunova I.O., Stukova G.I., Krivoruchko A.V. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express. 2016; 6(1): 14. https://doi.org/10.1186/s13568-016-0186-z

81. de Araujo L.V., Guimarães C.R., da Silva Marquita R.L., Santiago V.M., de Souza M.P., Nitschke M., et al. Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 2015; 63: 171–8. https://doi.org/10.1016/j.foodcont.2015.11.036

82. Cui H., Zhou H., Lin L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control. 2016; 61: 92–8. https://doi.org/10.1016/j.foodcont.2015.09.034

83. Patrinoiu G., Calderón-Moreno J.M., Chifiriuc C.M., Saviuc C., Birjega R., Carp O. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route. J. Colloid. Interface. Sci. 2016; 462: 64–74. https://doi.org/10.1016/j.jcis.2015.09.059

84. Qiu H., Pu F., Liu Z., Deng Q., Sun P., Ren J., et al. Depriving bacterial adhesion-related molecule to inhibit biofilm formation using CeO2-decorated metal-organic frameworks. Small. 2019; 15(36): e1902522. https://doi.org/10.1002/smll.201902522

85. Hossain M.I., Mizan M.F.R., Roy P.K., Nahar S., Toushik S.H., Ashrafudoulla M., et al. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res. Int. 2021; 148: 110595. https://doi.org/10.1016/j.foodres.2021.110595


Review

For citations:


Markova Yu.M., Smotrina Yu.V., Bykova I.B., Polyanina A.S., Stetsenko V.V., Efimochkina N.R., Sheveleva S.A. Formation of biofilms on microplastics in the food chain and their role as vectors of transfer of foodborne pathogens (literature review, part 2). Hygiene and Sanitation. 2025;104(5):621-630. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-5-621-630. EDN: cbmqdz

Views: 18


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)