Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Paracetamol hepatotoxicity against the background of chronic stress: morphology and antioxidant gene activity in rats

https://doi.org/10.47470/0016-9900-2025-104-5-655-662

EDN: eqatnx

Abstract

Introduction. The study is devoted to the investigation of the effect of chronic stress on the toxic effect of paracetamol on the liver in rats. Paracetamol, widely used as an analgesic and antipyretic, can cause hepatotoxicity associated with the formation of reactive oxygen species and the development of oxidative stress when overdosed. Antioxidant mechanisms of the body’s defense include key genes such as Hmox1, Sod1, and Nqo1, which regulate the redox balance. Chronic stress reduces glutathione levels, which increases the vulnerability of the liver to toxic effects.

The purpose of the work is to assess the toxicity of paracetamol in rats under the influence of chronic stress to develop new preventive approaches.

Materials and methods. The experiment involved four groups of white outbred rats (6 males and 6 females), which were administered paracetamol (1000 mg/kg) and modelled chronic stress.

Results. Morphological, biochemical, and genetic analyses were performed, and the liver weight coefficient was detected. In males, the liver weight coefficient varied: the minimum value (25.02) was recorded in the Stress group, the maximum (32.27) in the control group (p=0.001). In females in the «Stress» group, it was 34.77, which is lower compared to the «Paracetamol» (39.21; p=0.017) and «Paracetamol+Stress» (39.24; p=0.026) groups. Histomorphological analysis revealed signs of necrosis and inflammation with combined exposure. Genetic analysis showed an increase in Sod1 gene expression in males in the «Stress» group (p=0.001) and the highest Nqo1 level in the group with combined exposure to factors. Biochemical changes included decreased AST and ALT levels under stress and paracetamol.

Limitations. For the experiment, laboratory animals of one biological species were used, and the toxicant was used in the only one concentration.

Conclusion. The obtained results highlight the need for further study of the interaction of chronic stress and toxic factors for the development of preventive measures.

Compliance with ethical standards. The study protocol was approved by the local ethics committee of the Ufa Research Institute of Occupational Medicine and Human Ecology (Approval No. 01-02 from 08.02.2024). Throughout the study, the animals were kept in standard conditions with 12-hour artificial lighting during the daytime, a relatively constant level of humidity (30–70%) and an air temperature of 20–25 °C. All animal manipulations were carried out in strict compliance with the rules prescribed in the basic regulatory documents, including the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Strasbourg, 1986) and the Helsinki Declaration on the Humane Treatment of Animals.

Contribution:
Gizatullina A.A. – study concept and design, collection and processing of material, statistical processing, writing the text;
Karimov D.O. – study concept and design, statistical processing;
Yakupova T.G., Ryabova Yu.V., Kudoyarov E.R., Khusnutdinova N.Yu. – collection and processing of material;
Valova Ya.V. – collection and processing of material, statistical processing;
Smolyankin D.A. – editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. Industry research program of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing (Rospotrebnadzor) for 2021–2025 “Scientific substantiation of the national system for ensuring sanitary and epidemiological welfare, managing health risks and improving the quality of life of the population of Russia”, on the topic: 6.9.1.2 “Study of the impact of chemical production factors under conditions of chronic stress” No. NIOKTR I124021200153-3.

Received: January 30, 2025 / Revised: March 5, 2025 / Accepted: March 26, 2025 / Published: June 27, 2025

About the Authors

Alina A. Gizatullina
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»
Russian Federation

Junior Researcher at the Department of Toxicology and Genetics with an Experimental Clinic for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: alinagisa@yandex.ru



Denis O. Karimov
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»; ФГБУН «Национальный научно-исследовательский институт общественного здоровья имени Н.А. Семашко»
Russian Federation

PhD (Medicine), Head of the Department of Toxicology and Genetics with an Experimental Clinic for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation, Leading Researcher, Public Health Research Department, N.A. Semashko National Research Institute of Public Health, Moscow, 105064, Russian Federation

e-mail: karimovdo@gmail.com



Tatyana G. Yakupova
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»
Russian Federation

Junior Researcher at the Genetics Laboratory, Department of Toxicology and Genetics with an Experimental Clinic for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: tanya.kutlina.92@mail.ru 



Yulia V. Ryabova
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»
Russian Federation

PhD (Medicine), Head of the Toxicology Laboratory, Department of Toxicology and Genetics with an Experimental Clinic for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: ryabovaiuvl@gmail.com



Yana V. Valova
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»
Russian Federation

PhD (Biology), Head of the Genetics Laboratory, Department of Toxicology and Genetics with an Experimental Clinic for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

e-mail: Q.juk@yandex.ru



Eldar R. Kudoyarov
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»
Russian Federation

Junior Researcher at the Genetics Laboratory, Department of Toxicology and Genetics with an Experimental Clinic for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, Russian Federation

e-mail: ekudoyarov@gmail.com



Denis A. Smolyankin
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»
Russian Federation

Junior Researcher, Toxicology Laboratory, Department of Toxicology and Genetics with Experimental Clinic of Laboratory Animals, Ufa Research Institute of Occupational Medicine and Human Ecology, Ufa, 450106, Russian Federation

e-mail: smolyankin.denis@yandex.ru 



Nadezhda Yu. Khusnutdinova
ФБУН «Уфимский научно-исследовательский институт медицины труда и экологии человека»
Russian Federation

Researcher of the Toxicology laboratory of the toxicology and genetics department with the experimental clinic of laboratory animals of the Ufa Research Institute of Occupational Medicine and Human Ecology, Ufa, 450106, Russian Federation

e-mail: h-n-yu@yandex.ru



References

1. Kovalenko L.A., Ipatova M.G., Dolginov D.M., Afukov I.I. Acute paracetamol (acetaminophen) poisoning in children. Effektivnaya farmakoterapiya. 2018; (32): 14–8. https://elibrary.ru/sjvpct (in Russian)

2. Chidiac A.S., Buckley N.A., Noghrehchi F., Cairns R. Paracetamol (acetaminophen) overdose and hepatotoxicity: mechanism, treatment, prevention measures, and estimates of burden of disease. Expert Opin. Drug Metab. Toxicol. 2023; 19(5): 297–317. https://doi.org/10.1080/17425255.2023.2223959

3. Ivashkin V.T., Baranovsky A.Yu., Raikhelson K.L., Palgova L.K., Maevskaya M.V., Kondrashina E.A., et al. Drug-induced liver injuries (clinical guidelines for physicians). Rossiiskii zhurnal gastroenterologii, gepatologii, koloproktologii. 2019; 29(1): 101–31. https://doi.org/10.22416/1382-4376-2019-29-1-101-131 https://elibrary.ru/zerhtf (in Russian)

4. Minsart C., Liefferinckx C., Lemmers A., Dressen C., Quertinmont E., Leclercq I., et al. New insights in acetaminophen toxicity: HMGB1 contributes by itself to amplify hepatocyte necrosis in vitro through the TLR4-TRIF-RIPK3 axis. Sci. Rep. 2020; 10(1): 5557. https://doi.org/10.1038/s41598-020-61270-1

5. Krylov D.P., Rodimova S.A., Karabut M.M., Kuznetsova D.S. Experimental models for studying structural and functional state of the pathological liver (review). Sovremennye tekhnologii v meditsine. 2023; 15(4): 65–82. https://doi.org/10.17691/stm2023.15.4.06 (in Russian)

6. Du K., Ramachandran A., Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox. Biol. 2016; 10: 148–56. https://doi.org/10.1016/j.redox.2016.10.001

7. Promenasheva T.E., Kolesnichenko L.S., Kozlova N.M. Role of oxidative stress and glutathione system in the pathogenesis of nonalcoholic fatty liver disease. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2014; (5): 80–3. https://elibrary.ru/tmencj (in Russian)

8. Vairetti M., Di Pasqua L.G., Cagna M., Richelmi P., Ferrigno A., Berardo C. Changes in glutathione content in liver diseases: an update. Antioxidants (Basel). 2021; 10(3): 364. https://doi.org/10.3390/antiox10030364

9. Timasheva G.V., Baygildin S.S., Bakirov A.B., Repina E.F., Karimov D.O., Khusnutdinova N.Yu., et al. Morphological changes in the liver of experimental animals in the early stages after correction of exposure to high doses of paracetamol. Toksikologicheskii vestnik. 2022; 30(1): 21–8. https://doi.org/10.47470/0869-7922-2022-30-1-21-28 https://elibrary.ru/lkoafi (in Russian)

10. Matisz C.E., Badenhorst C.A., Gruber A.J. Chronic unpredictable stress shifts rat behavior from exploration to exploitation. Stress. 2021; 24(5): 635–44. https://doi.org/10.1080/10253890.2021.1947235

11. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25(4): 402–8. https://doi.org/10.1006/meth.2001.1262

12. Davidson D.G., Eastham W.N. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 1966; 2(5512): 497–9. https://doi.org/10.1136/bmj.2.5512.497

13. Belykh A.E., Bobyntsev I.I., Dudka V.T., Kryukov A.A. Rats’ liver morphology in conditions of chronic foot-shock stress against the background of delta sleep-inducing peptide injection. Sovremennye problemy nauki i obrazovaniya. 2017; (1): 49. https://elibrary.ru/xxncej (in Russian)

14. Gonçalves A.C., Coelho A.M., da Cruz Castro M.L., Pereira R.R., da Silva Araújo N.P., Ferreira F.M., et al. Modulation of paracetamol-induced hepatotoxicity by acute and chronic ethanol consumption in mice: a study pilot. Toxics. 2024; 12(12): 857. https://doi.org/10.3390/toxics12120857

15. Mossanen J.C., Tacke F. Acetaminophen-induced acute liver injury in mice. Lab. Anim. 2015; 49(1 Suppl.): 30–6. https://doi.org/10.1177/0023677215570992

16. Solar M., Grayck M.R., McCarthy W.C., Zheng L., Lacayo O.A., Sherlock L.G., et al. Absence of IκBβ/NFκB signaling does not attenuate acetaminophen-induced hepatic injury. Anat. Rec. (Hoboken). 2025; 308(4): 1251–64. https://doi.org/10.1002/ar.25126

17. Wang Y.Q., Geng X.P., Wang M.W., Wang H.Q., Zhang C., He X., et al. Vitamin D deficiency exacerbates hepatic oxidative stress and inflammation during acetaminophen-induced acute liver injury in mice. Int. Immunopharmacol. 2021; 97: 107716. https://doi.org/10.1016/j.intimp.2021.107716

18. Chatterjee S., Bhattacharya S., Choudhury P.R., Rahaman A., Sarkar A., Talukdar A.D., et al. Drynaria quercifolia suppresses paracetamol‑induced hepatotoxicity in mice by inducing Nrf-2. Bratisl. Lek. Listy. 2022; 123(2): 110–9. https://doi.org/10.4149/BLL_2022_017

19. Toyoda T., Cho Y.M., Akagi J.I., Mizuta Y., Matsushita K., Nishikawa A., et al. A 13-week subchronic toxicity study of acetaminophen using an obese rat model. J. Toxicol. Sci. 2018; 43(7): 423–33. https://doi.org/10.2131/jts.43.423

20. Ogiso T., Fukami T., Zhongzhe C., Konishi K., Nakano M., Nakajima M. Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid. Toxicology. 2021; 448: 152648. https://doi.org/10.1016/j.tox.2020.152648

21. Maeda H., Fujita K., Kobayashi H., Ushiki J., Nakanishi T., Tamai I. Novel LC-MS/MS method for simultaneous quantification of KW-7158, a new drug candidate for urinary incontinence and bladder hyperactivity, and its metabolites in rat plasma: a pharmacokinetic study in male and female rats. Arzneimittelforschung. 2012; 62(5): 213–21. https://doi.org/10.1055/s-0032-1301883

22. Scholl J.L., Afzal A., Fox L.C., Watt M.J., Forster G.L. Sex differences in anxiety-like behaviors in rats. Physiol. Behav. 2019; 211: 112670. https://doi.org/10.1016/j.physbeh.2019.112670

23. Bossers G.P.L., Hagdorn Q.A.J., Koop A.C., van der Feen D.E., Bartelds B., van Leusden T., et al. Female rats are less prone to clinical heart failure than male rats in a juvenile rat model of right ventricular pressure load. Am. J. Physiol. Heart Circ. Physiol. 2022; 322(6): H994–1002. https://doi.org/10.1152/ajpheart.00071.2022

24. Stekolnikov A.A., Reshetnyak V.V., Burdeyny V.V., Iskaliev E.A. Biochemical parameters of blood of mongrel rats. Mezhdunarodnyi vestnik veterinarii. 2020; (3): 163–8. https://doi.org/10.17238/issn2072-2419.2020.3.163 https://elibrary.ru/vqffbr (in Russian)

25. Malinin M.L., Tikhomirova E.I., Obukh L.B., Kiyashko V.V., Laskavyi V.N. Sex differences in biochemical indicators of blood in different species of laboratory animals. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya. 2008; 8(1): 51–4. https://elibrary.ru/jwazqh (in Russian)


Review

For citations:


Gizatullina A.A., Karimov D.O., Yakupova T.G., Ryabova Yu.V., Valova Ya.V., Kudoyarov E.R., Smolyankin D.A., Khusnutdinova N.Yu. Paracetamol hepatotoxicity against the background of chronic stress: morphology and antioxidant gene activity in rats. Hygiene and Sanitation. 2025;104(5):655-662. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-5-655-662. EDN: eqatnx

Views: 27


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)