Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Genetic polymorphisms and risks for developing of occupational pathology (literature review)

https://doi.org/10.47470/0016-9900-2025-104-7-844-850

EDN: dyxsnn

Abstract

Introduction. Currently, the main attention is paid to the detection of genetic diseases, but information on genetic polymorphisms responsible for differences in the human body’s response to the effects of harmful industrial factors is still insufficient. The review systematizes and summarizes contemporary data on the study of genetic polymorphisms as risk markers for the development of occupational diseases (dust lung pathology, chronic occupational intoxication with fluoride compounds and vibration disease). Collecting literary sources was conducted using the following databases: PubMed, Google Scholar, eLibrary, ResearchGate, Web of Science, Scopus, and CyberLeninka, using specific keywords and phrases: single-nucleotide polymorphisms of genes, occupational diseases, dust lung pathology, vibration disease, miners, chronic occupational intoxication with fluoride compounds, aluminum workers.

The role of genetic polymorphisms in the development of dust lung pathology in miners. The data on the association of some genetic polymorphisms with the development of dust lung pathology is presented. The connection of a number of genes with the changes in the function of external respiration in subjects working in harmful conditions o It is shown that f coal mining is shown.

The role of genetic polymorphisms in the development of chronic occupational intoxication with fluoride compounds. Chronic occupational intoxication with fluoride compounds is shown to occupy a leading position in the structure of occupational incidence in aluminum workers, therefore the main polymorphisms associated with the development of this pathology are given.

The role of genetic polymorphisms in the development of vibration disease. Analysis of literature data on predicting the risk for the development of the vibration disease allowed identifying a number of candidate genes reliably associated with the development of this occupational disease – caspase-8 (CASP8 gene), heat shock protein family 70 (HSPA1B gene), matrix metalloproteinase-1 (MMP1 gene).

Conclusion. The data presented in the review indicate to the significant contribution of genetic polymorphisms to the development of occupational pathology. Information about the risks for developing occupational diseases contributes to more accurate diagnosis, prevention, postponement, and also reduces the intensity of identified symptoms through timely medical and preventive measures.

Compliance with ethical standards. This study does not require the conclusion of a Biomedical Ethics Committee or other documents.

Contribution:
Zhukova A.G. – the concept and design of the study, writing the text, editing;
Kizichenko N.V. – material collection;
Yadykina T.K. – material collection;
Luzina F.A. – editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. The study had no sponsorship.

Received: April 21, 2025 / Revised: May 21, 2025 / Accepted: June 26, 2025 / Published: August 20, 2025

About the Authors

Anna G. Zhukova
Research Institute for Complex Problems of Hygiene and Occupational Diseases; Kuzbass Humanitarian and Pedagogical Institute of the Kemerovo State University
Russian Federation

DSc (Biology), Associate Professor, head of the molecular-genetic and experimental study laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: nyura_g@mail.ru



Natalya V. Kizichenko
Research Institute for Complex Problems of Hygiene and Occupational Diseases; Kuzbass Humanitarian and Pedagogical Institute of the Kemerovo State University
Russian Federation

PhD (Biology), senior researcher of the molecular-genetic and experimental study laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: natakiz8@mail.ru



Tatyana K. Yadykina
Research Institute for Complex Problems of Hygiene and Occupational Diseases
Russian Federation

PhD (Biology), leading researcher of the molecular-genetic and experimental study laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: yadykina.tanya@yandex.ru



Faina A. Luzina
Research Institute for Complex Problems of Hygiene and Occupational Diseases
Russian Federation

PhD (Biology), leading researcher of the molecular-genetic and experimental study laboratory, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Novokuznetsk, 654041, Russian Federation

e-mail: luzina45@mail.ru



References

1. Popova A.Yu. Working conditions and occupational morbidity in the Russian Federation. Meditsina truda i ekologiya cheloveka. 2015; (3): 7–13. https://elibrary.ru/uwajyj (in Russian)

2. Vadulina N.V., Gallyamov M.A., Devyatova S.M. Occupational morbidity in Russia: problems and solutions. Bezopasnost’ tehnogennyh i prirodnyh sistem. 2020; (3): 7–15. https://doi.org/10.23947/2541-9129-2020-3-7-15 https://elibrary.ru/rhguim (in Russian)

3. Faruque M.O., De Jong K., Vonk J.M., Kromhout H., Vermeulen R., Bültmann U., et al. Occupational exposures and genetic susceptibility to occupational exposures are related to sickness absence in the Lifelines cohort study. Sci. Rep. 2020; 10(1): 12963. https://doi.org/10.1038/s41598-020-69372-6

4. Bukhtiyarov I.V., Kuzmina L.P., Golovkova N.P., Chebotarev A.G., Leskina L.M., Khelkovsky-Sergeev N.S., et al. Justification of the platform of standards based on the risk’s assessment to health employees disorders of the leading sector’s enterprises of the economy. Meditsina truda i promyshlennaya ekologiya. 2021; 61(3): 155–60. https://doi.org/10.31089/1026 9428-2021-61-3-155-160 https://elibrary.ru/jzggrs (in Russian)

5. Shrine N., Izquierdo A.G., Chen J., Packer R., Hall R.J., Guyatt A.L., et al. Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk. Nat. Genet. 2023; 55(3): 410–22. https://doi.org/10.1038/s41588-023-01314-0

6. Qiao L., Liu X., He Y., Zhang J., Huang H., Bian W., et al. Progress of signaling pathways, stress pathways and epigenetics in the pathogenesis of skeletal fluorosis. Int. J. Mol. Sci. 2021; 22(21): 11932. https://doi.org/10.3390/ijms222111932

7. Smirnova E.L., Poteryaeva E.L., Ivanova A.A., Maksimov V.N., Funtikova I.S., Nesina I.A. Association of ID polymorphism of the CASP8 gene with vibration disease. Meditsina truda i promyshlennaya ekologiya. 2022; 62(12): 809–13. https://elibrary.ru/srspyj https://doi.org/10.31089/1026-9428-2022-62-12-809-813 (in Russian)

8. Khoury M.J., Gwinn M., Bowen M.S., Dotson W.D. Beyond base pairs to bedside: a population perspective on how genomics can improve health. Am. J. Public Health. 2012; 102(1): 34–7. https://doi.org/10.2105/AJPH.2011.300299

9. Gaffney A., Christiani D.C. Gene-environment interaction from international cohorts: impact on development and evolution of occupational and environmental lung and airway disease. Semin. Respir. Crit. Care Med. 2015; 36(3): 347–57. https://doi.org/10.1055/s-0035-1549450

10. Laviolle B., Denèfle P., Gueyffier F. The contribution of genomics in the medicine of tomorrow, clinical applications and issues. Therapie. 2019; 74(1): 9–15. https://doi.org/10.1016/j.therap.2018.11.012

11. Zhang Y., Sun D., Song Y., Ye Q. Candidate gene polymorphisms associated with silicosis and coal workers’ pneumoconiosis: a systematic review and meta-analysis. BMC Pulm. Med. 2024; 24(1): 580. https://doi.org/10.1186/s12890-024-03392-0

12. Velichkovsky B.T. Pathogenetic classification of occupational respiratory diseases caused by exposure to fibrogenic dust. Pulmonologiya. 2008; (4): 93–101. https://doi.org/10.18093/0869-0189-2008-0-4-93-101 https://elibrary.ru/juydpd (in Russian)

13. Perlman D.M., Maier L.A. Occupational lung disease. Med. Clin. North Am. 2019; 103(3): 535–48. https://doi.org/10.1016/j.mcna.2018.12.012

14. Qi X.M., Luo Y., Song M.Y., Liu Y., Shu T., Liu Y., et al. Pneumoconiosis: Current status and future prospects. Chin. Med. J. (Engl.). 2021; 134(8): 898–907. https://doi.org/10.1097/CM9.0000000000001461

15. Liu G., Xu Q., Zhao J., Nie W., Guo Q., Ma G. Research status of pathogenesis of pneumoconiosis and dust control technology in mine – a review. Appl. Sci. 2021; 11(21): 10313. https://doi.org/10.3390/app112110313

16. Bondarev O.I., Bugaeva M.S., Gerus A.Yu., Kizichenko N.V. Morphological risk predictors for miners’ health in the context of clinical studies. Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 2024; 103(7): 663–70. https://doi.org/10.47470/0016-9900-2024-103-7-663-670 https://elibrary.ru/nismjq (in Russian)

17. Bugaeva M.S., Bondarev O.I., Kazitskaya A.S., Mikhailova N.N. Pathogenetic bases of systemic morphological manifestations of coal worker’s pneumoconiosis: a review. Zdorov’e naseleniya i sreda obitaniya – ZNiSO. 2024; 32(2): 66–74. https://doi.org/10.35627/2219-5238/2024-32 2-66-74 https://elibrary.ru/gaodxh (in Russian)

18. Fan Y., Ma R., Du X., Chai D., Yang S., Ye Q. Small airway dysfunction in pneumoconiosis: a cross-sectional study. BMC Pulm. Med. 2022; 22(1): 167. https://doi.org/10.1186/s12890-022-01929-9

19. Wyss A.B., Sofer T., Lee M.K., Terzikhan N., Nguyen J.N., Lahousse L., et al. Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. Nat. Commun. 2018; 9(1): 2976. https://doi.org/10.1038/s41467-018-05369-0

20. Shrine N., Guyatt A.L., Erzurumluoglu A.M., Jackson V.E., Hobbs B.D., Melbourne C.A., et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019; 51(3): 481–93. https://doi.org/10.1038/s41588-018-0321-7

21. Bullard J.E., Wert S.E., Whitsett J.A., Dean M., Nogee L.M. ABCA3 mutations associated with pediatric interstitial lung disease. Am. J. Respir. Crit. Care Med. 2005; 172(8): 1026–31. https://doi.org/10.1164/rccm.200503-504OC

22. Liu Y., Yang J., Wu Q., Han R., Yan W., Yuan J., et al. LRBA gene polymorphisms and risk of coal workers’ pneumoconiosis: a case-control study from China. Int. J. Environ. Res. Public Health. 2017; 14(10): 1138. https://doi.org/10.3390/ijerph14101138

23. Wang W., Yu Y., Wu S., Sang L., Wang X., Qiu A., et al. The rs2609255 polymorphism in the FAM13A gene is reproducibly associated with silicosis susceptibility in a Chinese population. Gene. 2018; 661: 196–201. https://doi.org/10.1016/j.gene.2018.03.098

24. Jönsson E., Ljung L., Norrman E., Freyhult E., Ärlestig L., Dahlqvist J., et al. Pulmonary fibrosis in relation to genetic loci in an inception cohort of patients with early rheumatoid arthritis from northern Sweden. Rheumatology (Oxford). 2022; 61(3): 943–52. https://doi.org/10.1093/rheumatology/keab441

25. Hu Y., Li Z., Ren Y., Dai H. Association of family sequence similarity gene 13A gene polymorphism and interstitial lung disease susceptibility: A systematic review and meta-analysis. Mol. Genet. Genomic. Med. 2023; 11(11): e2279. https://doi.org/10.1002/mgg3.2279

26. Zhao R., Tao X., Zhang W., Li S., Zhou S., Ning A., et al. Novel functional eQTL-SNPs associated with susceptibility to occupational pulmonary fibrosis: a multi-stage study. Ecotoxicol. Environ. Saf. 2025; 289: 117679. https://doi.org/10.1016/j.ecoenv.2025.117679

27. Zhukova A.G., Mikhailova N.N., Sazontova T.G., Zhdanova N.N., Kazitskaya A.S., Bugaeva M.S., et al. Participation of free-radical processes in structural and metabolic disturbances in the lung tissues caused by exposure to coal-rock dust and their adaptogenic correction. Bull. Exp. Biol. Med. 2020; 168(4): 439–43. https://doi.org/10.1007/s10517-020-04727-7

28. Kuzmina L.P., Khotuleva A.G., Kovalevsky E.V., Anokhin N.N., Tskhomariya I.M. Association of genetic polymorphism of cytokines and antioxidant enzymes with the development of asbestosis. Meditsina truda i promyshlennaya ekologiya 2020; 60(12): 898–903. https://doi.org/10.31089/1026-9428-2020-60-12-898-903 https://elibrary.ru/ckpiuv (in Russian)

29. Christiani D.C., Mehta A.J., Yu C.L. Genetic susceptibility to occupational exposures. Occup. Environ. Med. 2008; 65(6): 430–6. https://doi.org/10.1136/oem.2007.033977

30. Alhobeira H.A., Mandal R.K., Khan S., Dar S.A., Mahto H., Saeed M., et al. Link between MnSOD Ala16Val (rs4880) polymorphism and asthma risk is insignificant from sequential meta-analysis. Bioinformation. 2020; 16(11): 789–800. https://doi.org/10.6026/97320630016789

31. Kazitskaya A.S., Yadykina T.K., Gulyaeva O.N., Panev N.I., Zhukova A.G. Polymorphism of antioxidant defense enzyme genes as the risk for formation of chronic dust bronchitis in long-term labour experience coal mine workers. Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 2023; 102(4): 345–50. https://doi.org/10.47470/0016-9900-2023-102-4-354-350 https://elibrary.ru/vdcjvh (in Russian)

32. Zhukova A.G., Kazitskaya A.S., Yadykina T.K., Gulyaeva O.N. Association of MnSOD and GPX1 gene polymorphisms with a risk of chronic dust-induced bronchitis. Byulleten’ sibirskoy meditsiny. 2023; 22(3): 36–42. https://doi.org/10.20538/1682-0363-2023-3-36-42 https://elibrary.ru/cnnhhb (in Russian)

33. Mukhammadiyeva G.F., Kutlina T.G., Karimov D.O., Bakirov A.B., Shagalina A.U., Idiyatullina E.F. Role of polymorphic variants of the genes TNFA, TSLP in the occupational asthma development. Ekologiya cheloveka. 2017; (10): 34–8. https://doi.org/10.33396/1728-0869-2017-10-34-38 https://elibrary.ru/zipiml (in Russian)

34. Zhukova A.G., Kazitskaya A.S., Yadykina T.K., Logunova T.D. Distribution of polymorphic variants of the TNF-α and TNFRSF1α genes in miners with dust lung pathology. Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 2023; 102(7): 670–4. https://doi.org/10.47470/0016-9900-2023-102-7-670-674 https://elibrary.ru/blohxx (in Russian)

35. Kazitskaya A.S., Zhukova A.G., Yadykina T.K., Gulyaeva O.N., Panev N.I. Contribution of polymorphic variants of pro- and anti-inflammatory cytokine genes to the development of occupational lung dust pathology in miners. Meditsina truda i promyshlennaya ekologiya. 2023; 63(8): 503–11. https://elibrary.ru/bfzggu https://doi.org/10.31089/1026-9428-2023-63-8-503-511 (in Russian)

36. Zhukova A.G., Kazitskaya A.S., Yadykina T.K., Korotenko O.Yu., Gulyaeva O.N. Association of hANP (rs5065) gene polymorphism with dust lung pathology and accompanying structural and functional changes in the myocardium among miners. Meditsina truda i promyshlennaya ekologiya. 2022; 62(5): 304–10. https://elibrary.ru/itltws https://doi.org/10.31089/1026-9428-2022-62-5-304-310 (in Russian)

37. Kazitskaya A.S., Bondarev O.I., Bugaeva M.S., Zhukova A.G., Yadykina T.K. Morphometric and genetic studies of the mechanisms of damage to the cardiovascular system in Kuzbass miners with dust lung pathology. Meditsina truda i promyshlennaya ekologiya. 2021; 61(9): 611–9. https://doi.org/10.31089/1026-9428-2021-61-9-611-619 https://elibrary.ru/aqoooe (in Russian)

38. Agalakova N.I., Gusev G.P. Effect of inorganic fluoride on living organisms of different phylogenetic level. J. Evol. Biochem. Physiol. 2011; 47(5): 393–406. https://doi.org/10.1134/S002209301105001X https://elibrary.ru/nqvbti

39. Roslaya N.A., Likhachyova E.I., Oransky I.E., Odinokaya V.A., Plotko E.G., Zhovtyak E.P., et al. Clinical and pathogenetic aspects of the chronic occupational intoxication with fluorine compounds in modern reality. Meditsina truda i promyshlennaia ekologiya. 2012; (11): 17–22. https://elibrary.ru/pihqlh (in Russian)

40. Alekhina D.A., Zhukova A.G., Sazontova T.G. Low dose of fluoride influences to free radical oxidation and intracellular protective systems in heart, lung and liver. Tekhnologii zhivykh sistem. 2016; 13(6): 49–56. https://elibrary.ru/xaghad (in Russian)

41. Agalakova N.A., Petrova T.I., Gusev G.P. Activation of Fas receptors, caspase-8 and caspase-3 by fluoride ions in rat erythrocytes in vitro. Zhurnal evolyutsionnoy biokhimii i fiziologii. 2019; 55(2): 90–96. https://doi.org/10.1134/S0044452919020013 https://elibrary.ru/itfztf (in Russian)

42. Nadei O.V., Ivanova T.I., Sufieva D.A., Agalakova N.I. Morphological changes of the rat hippocampal neurons following excessive fluoride consumption. Zhurnal anatomii i gistopatologii. 2020; 9(2): 53–60. https://doi.org/10.18499/2225-7357-2020-9-2-53-60 https://elibrary.ru/ypiljj (in Russian)

43. Yadykina T.K., Bugaeva M.S., Kochergina T.V., Mikhailova N.N. Clinical and experimental studies of the effect of chronic fluoride intoxication on the hormonal status of the body and morphological changes in the thyroid gland. Meditsina truda i promyshlennaya ekologiya. 2021; 61(3): 173–80. https://doi.org/10.31089/1026-9428-2021-61-3-173-180 https://elibrary.ru/bpwqqx (in Russian)

44. Du Y., Fu X., Jin J., Li Z., Xu K., Guo M., et al. Effects of SNPs in SOD2 and SOD3 interacted with fluoride exposure on the susceptibility of dental fluorosis. Int. J. Hyg. Environ. Health. 2022; 239: 113879. https://doi.org/10.1016/j.ijheh.2021.113879

45. Jarquín-Yñezá L., Alegría-Torres J.A., Castillo C.G., de Jesús Mejía-Saavedra J. Dental fluorosis and a polymorphism in the COL1A2 gene in Mexican children. Arch. Oral Biol. 2018; 96: 21–5. https://doi.org/10.1016/j.archoralbio.2018.08.010

46. Romualdo P.C., Pucinelli C.M., Tannure P.N., Nelson-Filho P., Segato R.A.B., Brancher J.A., et al. Evaluation of genetic polymorphisms in MMP2, MMP9 and MMP20 in Brazilian children with dental fluorosis. Environ. Toxicol. Pharmacol. 2019; 66: 104–8. https://doi.org/10.1016/j.etap.2018.12.016

47. Saha D., Goswami R., Majumdar K.K., Sikdar N., Pramanik S. Evaluating the association between dental fluorosis and polymorphisms in bone development and mineralization genes among population from a fluoride endemic region of Eastern India. Biol. Trace Elem. Res. 2021; 199(1): 1–8. https://doi.org/10.1007/s12011-020-02116-9

48. Chakraborty A., Pramanik S., Datta K., Goswami R., Saha D., Majumdar K.K., et al. Possible association between polymorphisms in ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2 genes and dental fluorosis in a population from an endemic region of West Bengal. Biol. Trace Elem. Res. 2022; 200(11): 4641–53. https://doi.org/10.1007/s12011-021-03072-8

49. González-Casamada C., Nevarez-Rascón M., Nevarez-Rascón A., González-Galván M., Isiordia-Espinoza M.A., Bologna-Molina R., et al. Single nucleotide polymorphisms and dental fluorosis: a systematic review. Dent. J. (Basel). 2022; 10(11): 211. https://doi.org/10.3390/dj10110211

50. Mikhailova N.N., Yadykina T.K., Bugaeva M.S., Danilov I.P., Semenova E.A., Doroshilova A.V., et al. Clinical and experimental studies of bone tissue in fluorosis. Meditsina truda i promyshlennaya ekologiya 2019; 59(6): 364–70. https://elibrary.ru/corffo (in Russian)

51. Yadykina T.K., Gulyaeva O.N., Rumpel O.A., Semenova E.A., Zhukova A.G. Associative connection of molecular genetic and biochemical markers with the character of chronic fluoride intoxication in aluminum industry workers. Meditsina truda i promyshlennaya ekologiya. 2019; 59(6): 324–9. https://elibrary.ru/lirbcd (in Russian)

52. Yadykina T.K., Korotenko O.Yu., Semenova E.A., Bugaeva M.S., Zhukova A.G. Study of glutathione-S-transferase (GST) T1 and M1 genes in aluminum industry workers with comorbid cardiovascular pathology. Meditsina truda i promyshlennaya ekologiya 2023; 63(8): 519–527. https://elibrary.ru/vfnyqa https://doi.org/10.31089/1026-9428-2023-63-8-519-527 (in Russian)

53. Yadykina T.K., Mikhailova N.N., Semenova E.A., Zhukova A.G., Panev N.I. The 283 А>G (BsmI) VDR gene polymorphism as a predictor of osteoporosis complicated by chronic pyelonephritis in aluminum production workers. Meditsina truda i promyshlennaya ekologiya. 2022; 62(5): 295–303. https://doi.org/10.31089/1026-9428-2022-62-5-295-303 https://elibrary.ru/hrelha (in Russian)

54. Katamanova E.V., Bichev S.S., Nurbaeva D.Zh. Value of brain structure dysfunction in pathogenesis and formation of clinical picture of vibration induced disease. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiyskoy akademii meditsinskikh nauk. 2012; (1): 32–6. https://elibrary.ru/pbtymn (in Russian)

55. Bernardo-Filho M., Bemben D., Stark C., Taiar R. Biological consequences of exposure to mechanical vibration. Dose Response. 2018; 16(3): 155932581879961. https://doi.org/10.1177/1559325818799618

56. Vorobieva V.V., Shabanov P.D. Cellular mechanisms of hypoxia development in the tissues of experimental animals under varying characteristics of vibration exposure. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii. 2019; 17(3): 59–70. https://doi.org/10.17816/RCF17359-70 https://elibrary.ru/qgqzkh (in Russian)

57. Karimov D.D., Shaykhlislamova E.R., Mukhammadieva G.F., Kudoyarov E.R., Valova Ya.V., Karimov D.O. MMP1 and SOD2 genes polymorphism in occupational diseases pathogenesis in workers of mining and processing enterprises. Meditsina truda i promyshlennaya ekologiya. 2024; 64(8): 552–8. https://doi.org/10.31089/1026-9428-2024-64-8-552-558 https://elibrary.ru/qolxqw (in Russian)

58. Turturici G., Sconzo G., Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem. Res. Int. 2011; 2011: 618127. https://doi.org/10.1155/2011/618127

59. Chernyak Yu.I., Merinova A.P. Analysis of polymorphic loci of candidate genes in patients with occupational diseases. Gigiena i Sanitariya (Hygiene and Sanitation, Russian journal). 2023; 102(7): 689–94. https://doi.org/10.47470/0016-9900-2023-102-7-689-694 https://elibrary.ru/glwiya (in Russian)

60. Giacconi R., Costarelli L., Malavolta M., Piacenza F., Galeazzi R., Gasparini N., et al. Association among 1267 A/G HSP70-2, -308 G/A TNF-α polymorphisms and pro-inflammatory plasma mediators in old ZincAge population. Biogerontology. 2014; 15(1): 65–79. https://doi.org/10.1007/s10522-013-9480-1

61. Zeng G.Q., Chen A.B., Li W., Song J.H., Gao C.Y. High MMP-1, MMP-2, and MMP-9 protein levels in osteoarthritis. Genet. Mol. Res. 2015; 14(4): 14811–22. https://doi.org/10.4238/2015.November.18.46

62. Sundar S.S., Jayesh S.R., Hussain S. Association of matrix metalloproteinase 1 gene promoter mutation and residual ridge resorption in edentulous patients of South Indian origin. J. Pharm. Bioallied. Sci. 2015; 7(Suppl. 2): S652–5. https://doi.org/10.4103/0975-7406.163591


Review

For citations:


Zhukova A.G., Kizichenko N.V., Yadykina T.K., Luzina F.A. Genetic polymorphisms and risks for developing of occupational pathology (literature review). Hygiene and Sanitation. 2025;104(7):844-850. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-7-844-850. EDN: dyxsnn

Views: 31


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)