

Validation of the methodology for measuring mass concentrations of chemical elements in blood by mass spectrometry method with inductively coupled plasma
https://doi.org/10.47470/0016-9900-2025-104-7-930-935
EDN: kaykjm
Abstract
Introduction. Identification of beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead levels in biological media is necessary for controlling health of both general population and production workers.
Aim. To validate author’s methodology MUK 4.1.3230–14 due to its modification for measuring mass concentrations of beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead in blood, which is not included into the certified area for the methodology application.
Materials and methods. Measurements were accomplished using the Agilent 7900 quadrupole ICP mass spec instrument (Agilent Technologies, USA) equipped with the octopole reaction system (ORS). Blood samples were prepared by acid decomposition in closed tubes in the HotBlock heating system at +90 °C for 80 minutes until homogenization was reached.
Results. Internal standards for each analyte were selected by experiments; calibration dependence was shown to have linearity; laboratory accuracy and precision were assessed. The following limits of detection (LOD) were established: beryllium, 0.0019 µg/L; cobalt, 0.00015 µg/L; arsenic, 0.0003 µg/L; molybdenum, 0.00059 µg/L; cadmium, 0.00015 µg/L; tin, 0.0006 µg/L, antimony, 0.00009 µg/L; lead, 0.0003 µg/L. The range of measurements in blood was 0.7–100 µg/l for beryllium with 15% inaccuracy; cobalt, 0.05–100 µg/L with 13% inaccuracy; arsenic, 0.1–1000 µg/L with 13% inaccuracy; molybdenum, 0.2–500 µg/L with 9% inaccuracy; cadmium, 0.02–100 µg/L with 9% inaccuracy; tin, 0.2–500 µg/L with 10% inaccuracy; antimony, 0.03–100 µg/L with 10% inaccuracy; lead, 0.1–1500 µg/L with 16% inaccuracy.
Limitations. Methodology MUK 4.1.3230–14 is limited to the determination of 9 elements in the blood (vanadium, chromium, manganese, nickel, copper, zinc, selenium, strontium, thallium). It was necessary to prove the acceptability of the method for determining beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead in blood.
Conclusion. The validated methodology has been proven to be eligible for selective measurement of mass concentrations of beryllium, cobalt, arsenic, molybdenum, cadmium, tin, antimony, and lead in blood with acceptable analytical values simultaneously with chemical elements (vanadium, chromium, manganese, nickel, copper, zinc, selenium, strontium, and thallium) already covered by the methodology MUK 4.1.3230–14.
Compliance with ethical standards. The study does not require the submission of the conclusion of the Biomedical Ethics Committee.
Contributions:
Nurislamova Т.V. – study concept and design;
Stenno Е.V. – writing and editing the text;
Nedoshitova А.V. – spectral analysis of samples;
Veikhman G.А. – statistical data analysis, writing the text;
Gileva К.О., Sukhikh Е.А., NIkolaeva А.Е. – sample preparation and data analysis.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Funding. The study had no sponsorship.
Received: April 21, 2025 / Revised: June 11, 2025 / Accepted: June 26, 2025 / Published: August 20, 2025
About the Authors
Tatyana V. NurislamovaRussian Federation
DSc (Biology), Head of the Gas Chromatography Analysis of the Department of Analytical Chemistry Analysis, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: nurtat@fcrisk.ru
Elena V. Stenno
Russian Federation
Head of the Elemental Analysis Laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: stenno@fcrisk.ru
Anna V. Nedoshitova
Russian Federation
Senior researcher at the Elemental Analysis Laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: nedoshitova@fcrisk.ru
Galina A. Veikhman
Russian Federation
PhD (Pharmacology), leading researcher at the Elemental Analysis Laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: veikhman_ga@mail.ru
Ksenya O. Gileva
Russian Federation
PhD (Chemistry), researcher at the Elemental Analysis Laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: ksenimanilova@mail.ru
Ekaterina A. Sukhikh
Russian Federation
Junior researcher at the Elemental Analysis Laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: suhihekaterina@mail.ru
Alena E. Nikolaeva
Russian Federation
Junior researcher at the Elemental Analysis Laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: alena.nikolaeva95@yandex.ru
References
1. Skalny A.V., Rudakov I.A. Bioelements in Medicine [Bioelementy v meditsine]. Moscow: Oniks; 2004. https://elibrary.ru/wqrzft (in Russian)
2. Avtsyn A.P., Zhavoronkov A.A., Rish M.A., Strochkova L.S. Human Microelementoses [Mikroelementozy cheloveka]. Moscow: Meditsina; 1991. (in Russian)
3. Ellenkhorn M.Dzh. Medical Toxicology: Diagnosis and Treatment of Poisoning in Humans [Meditsinskaya toksikologiya: diagnostika i lechenie otravlenii u cheloveka]. Moscow: Meditsina; 2003. (in Russian)
4. Hays S.M., Macey K., Poddalgoda D., Lu M., Nong A., Aylward L.L. Biomonitoring Equivalents for molybdenum. Regul. Toxicol. Pharmacol. 2016; 77: 223–9. https://doi.org/10.1016/j.yrtph.2016.03.004
5. Zemlyanova M.A., Zaitseva N.V., Stepankov M.S., Ignatova A.M. Evaluation potential hazard of molybdenum (VI) oxide nanoparticles for human health. Ekologiya cheloveka. 2022; 29(8): 563–75. https://doi.org/10.17816/humeco108248 https://elibrary.ru/kpztld (in Russian)
6. Sundar S., Chakravarty J. Antimony toxicity. Int. J. Environ. Res. Public Health. 2010; 7(12): 4267–77. https://doi.org/10.3390/ijerph7124267
7. Gerhardsson L., Brune D., Nordberg G.F., Wester P.O. Antimony in lung, liver and kidney tissue from deceased smelter workers. Scand. J. Work Environ. Health. 1982; 8(3): 201–8. https://doi.org/10.5271/sjweh.2475
8. Wu C.C., Chen Y.C. Assessment of industrial antimony exposure and immunologic function for workers in Taiwan. Int. J. Environ. Res. Public Health. 2017; 14(7): 689. https://doi.org/10.3390/ijerph14070689
9. Iavicoli I., Caroli S., Alimonti A., Petrucci F., Carelli G. Biomonitoring of a worker population exposed to low antimony trioxide levels. J. Trace Elem. Med. Biol. 2002; 16(1): 33–9. https://doi.org/10.1016/S0946-672X(02)80006-2
10. Liao Y.H., Yu H.S., Ho C.K., Wu M.T., Yang C.Y., Chen J.R., et al. Biological monitoring of exposures to aluminium, gallium, indium, arsenic, and antimony in optoelectronic industry workers. J. Occup. Environ. Med. 2004; 46(9): 931–6. https://doi.org/10.1097/01.jom.0000137718.93558.b8
11. Zaitseva N.V., Shur P.Z., Kiryanov D.A., Kamaltdinov M., Cinker M.Yu. Methodical approaches for health population risk estimation based evolution models. Zdorov’e naseleniya i sreda obitaniya – ZNiSO. 2013; (1): 4–6. https://elibrary.ru/pxltgf (in Russian)
12. Ivanenko N.B., Ganeev A.A., Solovyev N.D., Moskvin L.N. Determination of microelements in biological fluids. Zhurnal analiticheskoi khimii. 2011; 66(9): 900–15. https://doi.org/10.1134/S1061934811090036 https://elibrary.ru/ocxgxv (in Russian)
13. Markova O.L., Shilov V.V., Kuznetsov A.V., Metelitsa N.D. Comparative assessment of approaches to the problem of biomonitoring of human health of domestic and foreign researchers (literature review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2020; 99(6): 545–50. https://doi.org/10.47470/0016-9900-2020-99-6-545-550 https://elibrary.ru/qsgxrd (in Russian)
14. Rodushkin I., Ödman F., Olofsson R., Axelsson M.D. Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2000; 15(8): 937–44. https://doi.org/10.1039/b003561k
15. Ivanenko N.B., Ivanenko A.A., Soloviev N.D., Navolotsky D.V., Pavlova O.V., Ganeev A.A. Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood without prior decomposition by atomic absorption spectrometry. Biomeditsinskaya khimiya. 2014; 60(3): 378–88. https://doi.org/10.18097/pbmc20146003378 https://elibrary.ru/slbpvx (in Russian)
16. Seregina I.F., Lanskaya S.Yu., Okina O.I., Bolshov M.A., Lyapunov S.M., Chugunova O.L., et al. Determination of chemical elements in biological fluids and diagnostic substrates of children using inductively coupled plasma mass spectrometry. Zhurnal analiticheskoi khimii. 2010; 65(9): 986–94. https://doi.org/10.1134/S1061934810090133 https://elibrary.ru/muyyyf (in Russian)
17. Heitland P., Köster H.D. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS. J. Trace Elem. Med. Biol. 2006; 20(4): 253–62. https://doi.org/10.1016/j.jtemb.2006.08.001
18. Pino A., Amato A., Alimonti A., Mattei D., Bocca B. Human biomonitoring for metals in Italian urban adolescents: data from Latium Region. Int. J. Hyg. Environ. Health. 2012; 215(2): 185–90. https://doi.org/10.1016/j.ijheh.2011.07.015
19. Bocca B., Forte G., Petrucci F., Senofonte O., Violante N., Alimonti A. Development of methods for the quantification of essential and toxic elements in human biomonitoring. Ann. Ist. Super Sanita. 2005; 41(2): 165–70.
20. Goullé J.P., Mahieu L., Castermant J., Neveu N., Bonneau L., Lainé G., et al. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci. Int. 2005; 153(1): 39–44. https://doi.org/10.1016/j.forsciint.2005.04.020
21. D’Ilio S., Violante N., Di Gregorio M., Senofonte O., Petrucci F. Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system. Anal. Chim. Acta. 2006; 579(2): 202–8. https://doi.org/10.1016/j.aca.2006.07.027
22. Golubkova E.V., Komina I.G., Chikanceva E.I. Validation and verification of measurement methods: opinions and views. Zavodskaya laboratoriya. Diagnostika materialov. 2023; 89(2–2): 77–80. https://doi.org/10.26896/1028-6861-2023-89-2-II-77-80 https://elibrary.ru/jniqeq (in Russian)
23. Nezhikhovskii G.R., Kadis R.L., eds. Validation of Analytical Techniques. Quantitative Description of Uncertainty in Analytical Measurements. Laboratory Manuals [Validatsiya analiticheskikh metodik. Kolichestvennoe opisanie neopredelennosti v analiticheskikh izmereniyakh. Rukovodstva dlya laboratorii]. St. Petersburg: Professiya; 2016. (in Russian)
24. Medvedevskikh M.Yu., Krasheninina M.P., Sergeeva A.S., Baranovskaya V.B. Validation of chemical analysis methods: a practical example. Zavodskaya laboratoriya. Diagnostika materialov. 2020; 86(8): 72–9. https://doi.org/10.26896/1028-6861-2020-86-8-72-79 https://elibrary.ru/jtaxgv (in Russian)
25. Tietz N.W. Clinical Guide to Laboratory Tests. Philadelphia: W.B. Saunders; 1983.
26. Burtis C.A., Ashwood E.R., Bruns D.E., Tietz N.W. Tietz Textbook of Clinical Chemestry and Molecular Diagnostics. 4th ed. St. Louis, MO: Elsevier Saunders; 2006.
27. Societa’Italiana Valori di Riferimento-Quarta lista dei Valori di Riferimento per elementi, Composti Organici e Loro Metaboliti-Edizione; 2011. Available at: https://sivr.it/documenti/sivr2011.pdf
28. Reference data. Trace Elements in human biological material; 2014. Available at: https://alsglobal.se/media-se/pdf/information/reference_data_biomonitoring.pdf
29. Boev V.M., Zelenina L.V., Kudusova L.Kh., Kryazheva E.A., Zelenin D.O. Hygienic assessment of carcinogenic risk to public health associated with contamination of depositing environments with heavy metals. Analiz riska zdorov’yu. 2022; (1): 17–26. https://doi.org/10.21668/health.risk/2022.1.02.eng https://elibrary.ru/amonix (in Russian)
30. Cai L.M., Xu Z.C., Qi J.Y., Feng Z.Z., Xiang T.S. Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere. 2015; 127: 127–35. https://doi.org/10.1016/j.chemosphere.2015.01.027
31. Bakhtereva E.V., Leiderman E.L., Plotko E.G., Ryabkova T.A. Assessment of neurophysiological parameters of the nervous system in non-ferrous foundry workers. Analiz riska zdorov’yu. 2023; (3): 156–62. https://doi.org/10.21668/health.risk/2023.3.15 https://elibrary.ru/fwbxzr (in Russian)
Review
For citations:
Nurislamova T.V., Stenno E.V., Nedoshitova A.V., Veikhman G.A., Gileva K.O., Sukhikh E.A., Nikolaeva A.E. Validation of the methodology for measuring mass concentrations of chemical elements in blood by mass spectrometry method with inductively coupled plasma. Hygiene and Sanitation. 2025;104(7):930-935. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-7-930-935. EDN: kaykjm