Hygienic aspects of the exposure to chemical and physical environmental factors on reproductive health in men of fertile age (literature review)
https://doi.org/10.47470/0016-9900-2025-104-10-1296-1301
EDN: jgxrkv
Abstract
Reduced fertility in men of reproductive age due to the multi-stage nature, duration, and increased vulnerability of spermatogenesis to effects of environmental factors, primarily chemical and physical ones, is a pressing problem of hygiene and preventive medicine. To identify key areas of development and improvement of the methodology for solving this scientific problem, first of all, it is necessary to systematize knowledge in the field of studying patterns and characteristics of effects produced by environmental exposures on reproductive potential.
In this review there are reflected hygienic aspects of effects produced by chemical and physical factors on reproductive health in men, which have been presented in scientific practice over the last twenty five years. The subject of this review was materials found in Russian and international scientometric databases (eLIBRARY, PubMed, Google Scholar, Web of Science, Scopus) and scientific societies and associations of the Russian Federation containing information on peculiar effects produced by chemical and physical environmental factors on reproductive health (160 reports).
By now, direct and indirect effects produced by chemical and physical factors on male reproductive health have been established, characterized by morphological and functional disorders of the reproductive system itself or indirect induction of a cascade of oxidative, inflammatory, and other in the body, the pathogenetic mechanisms of which can disrupt the reproductive function at various levels of its regulation through the endocrine, immune, nervous, cardiovascular, and other systems. Despite the existing general scientific achievements in this research area, difficulties and limitations have been identified as regards effects on fertility produced not only by chemical and physical factors or their combined effects but also lifestyle, bad habits, infectious and chronic diseases. This complicates the process of substantiating the true determinant. Systematization of patterns and identification of peculiar direct and indirect influence of environmental factors, primarily chemical and physical ones, on reproductive health provides a more detailed insight into pathogenetic mechanisms of their impact and allows increasing effectiveness of early diagnosis and targeted correction of identified male fertility disorders. This is critically important for maintaining and strengthening reproductive health of the country’s population and ensuring sustainable demographic development of the state.
Contribution:
Zemlyanova M.A. — study design and editing the text;
Koldibekova J.V. — data collection and analysis, writing the text;
Kamenskikh D.M. — data collection and analysis, writing the text.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Funding. The study had no sponsorship.
Received: September 21, 2025 / Accepted: October 15, 2025 / Published: November 14, 2025
About the Authors
Marina A. ZemlyanovaRussian Federation
DSc (Medicine), professor, head, Biochemical and cytogenetic diagnostic techniques department, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: zem@fcrisk.ru
Juliya V. Koldibekova
Russian Federation
PhD (Biology), senior researcher, head, Laboratory of metabolism and pharmacokinetics, Department of biochemical and cytogenetic diagnostic methods, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: koldibekova@fcrisk.ru
Daria M. Kamenskikh
Russian Federation
Laboratory assistant-researcher, Laboratory of biochemical and nanosensor diagnostics of the Department of biochemical and cytogenetic diagnostic methods, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation
e-mail: teterina@fcrisk.ru
References
1. Onishchenko G.G., Zaitseva N.V., Mai I.V., Shur P.Z., Popova A.Yu., Alekseev V.B., et al. Health Risk Analysis in the Strategy of State Socio-Economic Development: A Monograph. 2nd ed. [Analiz riska zdorov’yu v strategii gosudarstvennogo sotsial’no-ekonomicheskogo razvitiya: monografiya]. Moscow-Perm’; 2024. (in Russian)
2. Natsun L.N. Women’s of reproductive age health. Sotsial’nye, kul’turnye issledovaniya i bezopasnost’. 2020; 3(3): 167–81. https://doi.org/10.14258/ssi(2020)3-12 https://elibrary.ru/dxjvlw (in Russian)
3. Gladkaya V.S., Gritsinskaya V.L., Medvedeva N.N. The modern trends in reproductive health and reproductive behavior of the female population in Russia. Mat’ i ditya v Kuzbasse. 2017; (1): 10–5. https://elibrary.ru/yfuhad (in Russian)
4. Epanchintseva E.A. Male infertility: who is to blame and what to do? Nauka iz pervykh ruk. 2018; (1): 32–40. https://elibrary.ru/xnqocd (in Russian)
5. Shantanova L.N., Osadchuk L.V., Dashiyev B.G., Kleschev M.A., Gutorova N.V., Osadchuk A.V. Estimations of reproductive health in young males from Republic of Buryatia. Acta Biomedica Scientifica. 2012; (6): 44–6. https://elibrary.ru/pjbord (in Russian)
6. Lychagin A.S., Malinina O.Yu. Miscarriage: the role of male factor and the methods of treatment. Problemy reproduktsii. 2017; 23(5): 106–14. https://doi.org/10.17116/repro2017235106-114 https://elibrary.ru/zttdip (in Russian)
7. Popov V.B., Golubentseva Yu.V., Sitgalina M.A., Kirilenko P.S., Arseneva E.A. Effects of toxicants and reproductive processes in vitro. Meditsina ekstremal’nykh situatsii. 2018; 20(S3): 419–31. https://elibrary.ru/vnjtci (in Russian)
8. Fesenko M.A., Golovaneva G.V., Miteleva T.Yu., Vujtsik P.A. The influence of harmful occupational physical factors on the male workers’ reproductive health (analytical review). Meditsina truda i promyshlennaya ekologiya. 2023; 63(8): 528–36. https://doi.org/10.31089/1026-9428-2023-63-8-528-536 https://elibrary.ru/aebgsg (in Russian)
9. Voskanyan Ya.Yu., Vasileva O.S. Psychological theories of infertility: The evolution of ideas. Bulletin of Donetsk National University. Vestnik Donetskogo natsional’nogo universiteta. Seriya D. Filologiya i psikhologiya. 2025; (1): 159–72. https://doi.org/10.5281/zenodo.14934730 (in Russian)
10. Litvinova N.A., Lesnikov A.I., Tolochko T.A., Shmelev A.A. Factors affecting male fertility: a review. Fundamental’naya i klinicheskaya meditsina. 2021; 6(2): 124–35. https://doi.org/10.23946/2500-0764-2021-6-2-124-135 https://elibrary.ru/iltbmu (in Russian)
11. Galimov S.N., Gromenko Yu.Yu., Galimov K.Sh., Galimova E.F., Bodrova E.S., Bulygin K.V., et al. Molecular mechanisms of male infertility: main directions of scientific research. Urologiya. 2022; (4): 114–7. https://doi.org/10.18565/urology.2022.4.114-117 https://elibrary.ru/vbbctj (in Russian)
12. Gül M., Russo G.I., Kandil H., Boitrelle F., Saleh R., Chung E., et al. Male infertility: new developments, current challenges, and future directions. World J. Mens. Health. 2024; 42(3): 502–17. https://doi.org/10.5534/wjmh.230232
13. Zhu Q., Li X., Ge R.S. Toxicological effects of cadmium on mammalian testis. Front. Genet. 2020; 11: 527. https://doi.org/10.3389/fgene.2020.00527
14. Fouad A.A., Albuali W.H., Jresat I. Simvastatin treatment ameliorates injury of rat testes induced by cadmium toxicity. Biol. Trace Elem. Res. 2013; 153(1–3): 269–78. https://doi.org/10.1007/s12011-013-9667-y
15. Tatli Seven P., Iflazoglu Mutlu S., Seven I., Arkali G., Ozer Kaya S., Kanmaz O.E. Protective role of yeast beta-glucan on lead acetate-induced hepatic and reproductive toxicity in rats. Environ. Sci. Pollut. Res. Int. 2021; 28(38): 53668–78. https://doi.org/10.1007/s11356-021-14398-0
16. Dolgikh O.V., Dianova D.G., Alikina I.N., Krivtsov A.V. The benzene impact on programmed death of sperm cell. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(10): 1060–3. https://doi.org/10.47470/0016-9900-2021-100-10-1060-1063 https://elibrary.ru/sseenj (in Russian)
17. Bokov D.A., Kovbyk L.V., Semyonova M.V. Impact of chrome and benzol on testes Leydig’s cells. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta. 2013; (3): 104–6. https://elibrary.ru/qjcgkl (in Russian)
18. Bokov D.A., Shevliuk N.N. Spermatogenesis parameters in mice cba×c57bl6 under combined action of chromium and benzen. Problemy reproduktsii. 2014; 20(2): 7–11. https://elibrary.ru/sdlwuz (in Russian)
19. Li Y., Wu J., Zhou W., Gao E. Effects of manganese on routine semen quality parameters: results from a population-based study in China. BMC Public Health. 2012; 12: 919. https://doi.org/10.1186/1471-2458-12-919
20. Yang H., Wang J., Yang X., Wu F., Qi Z., Xu B., et al. Occupational manganese exposure, reproductive hormones, and semen quality in male workers: A cross-sectional study. Toxicol. Ind. Health. 2019; 35(1): 53–62. https://doi.org/10.1177/0748233718810109
21. Sedova A.O., Chernykh V.B. The negative impact of phthalates on male reproductive system and fertility. Andrologiya i genital’naya khirurgiya. 2023; (2): 19–30. (in Russian)
22. Cariati F., Carbone L., Conforti A., Bagnulo F., Peluso S.R., Carotenuto C., et al. Bisphenol A – induced epigenetic changes and its effects on the male reproductive system. Front. Endocrinol (Lausanne). 2020; 11: 453. https://doi.org/10.3389/fendo.2020.00453
23. Lahimer M., Abou Diwan M., Montjean D., Cabry R., Bach V., Ajina M., et al. Endocrine disrupting chemicals and male fertility: from physiological to molecular effects. Front. Public Health. 2023; 11: 1232646. https://doi.org/10.3389/fpubh.2023.1232646
24. Faiad W., Soukkarieh C., Murphy D.J., Hanano A. Effects of dioxins on animal spermatogenesis: A state-of-the-art review. Front. Reprod. Health. 2022; 4: 1009090. https://doi.org/10.3389/frph.2022.1009090
25. Chigrinets S.V., Bryuhin G.V., Ilenkho O.S. Environmental exposure to endocrine disruptor of triclosan and semen quality of men. Problemy reproduktsii. 2018; 24(3): 61–6. https://doi.org/10.17116/repro201824361 https://elibrary.ru/usvwuc (in Russian)
26. Adegbola C.A., Akhigbe T.M., Adeogun A.E., Tvrdá E., Pizent A., Akhigbe R.E. A systematic review and meta-analysis of the impact of triclosan exposure on human semen quality. Front. Toxicol. 2024; 6: 1469340. https://doi.org/10.3389/ftox.2024.1469340
27. The effect of peripubertal exposure to persistent chemicals on the inherited epigenome of spermatozoa. Truth. Available at: https://istina.cemi-ras.ru/conferences/presentations/96829996/ (in Russian)
28. Biomolecule. Epigenetics: the invisible commander of the genome. Available at: https://biomolecula.ru/articles/epigenetika-nevidimyi-komandir-genoma (in Russian)
29. Stuppia L., Franzago M., Ballerini P., Gatta V., Antonucci I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin. Epigenetics. 2015; 7: 120. https://doi.org/10.1186/s13148-015-0155-4
30. Brevik A., Lindeman B., Rusnakova V., Olsen A.K., Brunborg G., Duale N. Paternal benzo[a]pyrene exposure affects gene expression in the early developing mouse embryo. Toxicol. Sci. 2012; 129(1): 157–65. https://doi.org/10.1093/toxsci/kfs187
31. Van Cauwenbergh O., Di Serafino A., Tytgat J., Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin. Epigenetics. 2020; 12(1): 65. https://doi.org/10.1186/s13148-020-00845-1
32. Martini M., Froment P., Franceschini I., Pillon D., Guibert E., Cahier C., et al. Perinatal exposure to methoxychlor affects reproductive function and sexual behavior in mice. Front. Endocrinol. (Lausanne). 2020; 11: 639. https://doi.org/10.3389/fendo.2020.00639
33. Shpakov A.O. Endogenous and synthetic regulators of the peripheral links of the hypothalamic-pituitary-gonadal and thyroid axes. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova. 2020; 106(6): 696–719. https://doi.org/10.31857/S0869813920060126 https://elibrary.ru/xpspev (in Russian)
34. Borges E. Jr., Setti A.S., Braga D.P., Figueira Rde C., Iaconelli A. Jr. Decline in semen quality among infertile men in Brazil during the past 10 years. Int. Braz. J. Urol. 2015; 41(4): 757–63. https://doi.org/10.1590/s1677-5538.ibju.2014.0186
35. Chigrinets S.V., Bryuhin G.V. The influence of bisphenol a exposure on testicular function (experimental and clinical study). Problemy reproduktsii. 2019; 25(3): 113–21. https://doi.org/10.17116/repro201925031113 https://elibrary.ru/sxkucw (in Russian)
36. Labohá P., Jambor T., Yawer A., Lukáč N., Sovadinová I. Molecular mechanisms of alkylphenol-mediated endocrine disruption in Leydig cells. Toxicol. Lett. 2016; 258: 245–6. https://doi.org/10.1016/j.toxlet.2016.06.1872
37. Gaido K.W., Maness S.C., McDnnell D.P., Dehal S.S., Kupfer D., Safe S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: structure-activity studies. Mol. Pharmacol. 2000; 58(4): 852–8.
38. Rahman M.S., Kwon W.S., Karmakar P.C., Yoon S.J., Ryu B.Y., Pang M.G. Gestational exposure to bisphenol a affects the function and proteome profile of F1 spermatozoa in adult mice. Environ. Health Perspect. 2017; 125(2): 238–45. https://doi.org/10.1289/ehp378
39. Kourouma A., Peng D., Chao Q., Lopez Y.M., Changjiang L., Chengmin W., et al. Bisphenol A induced reactive oxygen species (ROS) in the liver and affect epididymal semen quality in adults Sprague-Dawley rats. Toxicol. Environ. Health Sci. 2014; 6(4): 103–12. https://doi.org/10.5897/JTEHS2014.0309
40. Chigrinets S.V., Bryukhin G.V., Zav’yalov S.N. Мorphofunctional characteristics of the male reproductive system of white rats treated with bisphenol a and triclosan. Zhurnal anatomii i gistopatologii. 2019; 8(1): 77–81. https://elibrary.ru/zauiyx (in Russian)
41. Drapkina O.M., Kim O.T. Obesogens: how is obesity related to the environmental situation? Profilakticheskaya meditsina. 2021; 24(2): 82–8. https://doi.org/10.17116/profmed20212402182 https://elibrary.ru/vqzllq (in Russian)
42. Rudakov O.B., Rudakova L.V. Desogens are endocrine disruptors: distribution, control methods. Prikladnye informatsionnye aspekty meditsiny. 2024; 27(2): 73–80. https://doi.org/10.31515/1019-8946-2018-2-50-53 (in Russian)
43. Chaudhuri G.R., Das A., Kesh S.B., Bhattacharya K., Dutta S., Sengupta P., et al. Obesity and male infertility: multifaceted reproductive disruption. Middle East Fertility Society Journal. 2020; 27(1): 8. https://doi.org/10.1186/s43043-022-00099-2 https://elibrary.ru/omgmcy
44. Matsievskii N.A. Modern Understanding of Obesity [Sovremennoe predstavlenie ob ozhirenii]. Moscow: Prima Print; 2020. (in Russian)
45. Lafuente A., Márquez N., Pérez-Lorenzo M., Pazo D., Esquifino A.I. Cadmium effects on hypothalamic-pituitary-testicular axis in male rats. Exp. Biol. Med. (Maywood). 2001; 226(6): 605–11. https://doi.org/10.1177/153537020122600615
46. Varlamova T.M., Sokolova M.Yu. Women’s reproductive health and thyroid insufficiency. Ginekologiya. 2004; 6(1): 29–31. https://elibrary.ru/rszgux (in Russian)
47. Evteeva A.A., Sheremeta M.S., Pigarova E.A. Endocrine disruptors in the pathogenesis of socially significant diseases such as diabetes mellitus, malignant neoplasms, cardiovascular diseases, pathology of the reproductive system. Ozhirenie i metabolizm. 2021; 18(3): 327–35. https://doi.org/10.14341/omet12757 https://elibrary.ru/ahfilo (in Russian)
48. Natural Womanyhood. Endocrine-disrupting chemicals: How do they affect male fertility? Available at: https://naturalwomanhood.org/endocrine-disrupting-chemical-fertility/
49. Singh V., Agrawal N.K., Verma R., Singh K. HPG axis: The central regulator of spermatogenesis and male fertility. Male Infertility: Understanding, Causes and Treatment. 2017: 25–36. https://doi.org/10.1007/978-981-10-4017-7_3
50. Ametov A.S., Pashkova E.Yu. Testosterone therapy evolution. New preparations – new benefits. Endokrinologiya: novosti, mneniya, obuchenie. 2017; (2): 55–65. https://elibrary.ru/yzmwqz (in Russian)
51. Medgorod. Stress and hormones: how does chronic stress affect the endocrine system? Available at: https://medgorod-clinic.ru/stati/stress-i-gormony-kak-khronicheskoe-napryazhenie-vliyaet-na-endokrinnuyu-sistemu-/ (in Russian)
52. Bozhedomov V.A., Nikolayeva M.A., Sforish E.A., Rokhlikov I.M., Lifatova N.A., Ushakova I.V., et al. Etiopathogenesis of autoimmune responses against sperm. Andrologiya i genital’naya khirurgiya. 2012; 13(4): 45–53. https://elibrary.ru/pnmjaz (in Russian)
53. Vereschako G.G., Chueshova N.V., Shalatonin V.I., Suchareva D.V. Effects of long-term electromagnetic radiation of mobile phones (1745 mhz) on blood and reproductive system of male rats. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki. 2016; (7): 201–5. https://elibrary.ru/zbbhmn (in Russian)
54. Vereshchako G.G. The problems of male reproduction due to the use of mobile phone. Problemy reproduktsii. 2014; 20(4): 73–8. https://elibrary.ru/suljbf (in Russian)
55. Vereshchako G.G., Shalatonin V.I., Gorokh G.A., Chueshova N.V., Kozlov I.G. Long-term effect of mobile phone EMF (1800 MHz) on epididymal spermatozoa and hormone levels in blood serum of rats. Ekologicheskii vestnik. 2016; (3): 59–63. (in Russian)
56. Gevrek F., Aydin D., Ozsoy S., Aygun H., Bicer C. Inhibition by Egb761 of the effect of cellphone radiation on the male reproductive system. Bratisl. Lek. Listy. 2017; 118(11): 676–83. https://doi.org/10.4149/bll_2017_128
57. Oyewopo A.O., Olaniyi S.K., Oyewopo C.I., Jimoh A.T. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats. Andrologia. 2017; 49(10). https://doi.org/10.1111/and.12772
58. Shahin S., Singh S.P., Chaturvedi C.M. 1800 MHz mobile phone irradiation induced oxidative and nitrosative stress leads to p53 dependent Bax mediated testicular apoptosis in mice, Mus musculus. J. Cell. Physiol. 2018; 233(9): 7253–67. https://doi.org/10.1002/jcp.26558
59. Azimzadeh M., Jelodar G. Alteration of testicular regulatory and functional molecules following long-time exposure to 900 MHz RFW emitted from BTS. Andrologia. 2019; 51(9): e13372. https://doi.org/10.1111/and.13372
60. Yahyazadeh A., Altunkaynak B.Z., Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field. Acta Histochem. 2020; 122(1): 151467. https://doi.org/10.1016/j.acthis.2019.151467
61. Maluin S.M., Osman K., Jaffar F.H.F., Ibrahim S.F. Effect of radiation emitted by wireless devices on male reproductive hormones: a systematic review. Front. Physiol. 2021; 12: 732420. https://doi.org/10.3389/fphys.2021.732420
62. Berdysh D.S., Mirzoyev R.K. The influence of physical factors on human sperm motility. Mezhdunarodnyi studencheskii nauchnyi vestnik. 2018; (4–3): 370–3. https://elibrary.ru/xplfud (in Russian)
63. Hamerezaee M., Dehghan S.F., Golbabaei F., Fathi A., Barzegar L., Heidarnejad N. Assessment of semen quality among workers exposed to heat stress: a cross-sectional study in a steel industry. Saf. Health Work. 2018; 9(2): 232–5. https://doi.org/10.1016/j.shaw.2017.07.003
64. Evstratova O.R., Kharitonova A.S., Lushchik M.V. The role of free radical oxidation processes in the development of pathologies. Mezhdunarodnyi studencheskii nauchnyi vestnik. 2016; (4–2): 146–7. https://elibrary.ru/wciucp (in Russian)
65. Saleh R.A., Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J. Androl. 2002; 23(6): 737–52.
66. Borovets S.Yu., Egorova V.A., Gzgzian A.M., Al-Shukri S.Kh. Fragmentation of sperm DNA: clinical significance, reasons, methods of evaluation and correction. Urologicheskie vedomosti. 2020; 10(2): 173–80. https://doi.org/10.17816/uroved102173-180 https://elibrary.ru/krqudx (in Russian)
67. Qian J., Mo C., Si Y., Zhang Q., Chen Y., Zhu J., et al. Temperature change and male infertility prevalence: an ecological study. BMC Public Health. 2025; 25(1): 1756. https://doi.org/10.1186/s12889-025-22934-7
68. Lizarev A.V. Dynamics of hormonal parameters changes in workers affected by noise nuisance. Meditsina truda i promyshlennaya ekologiya. 2008; (1): 35–7. https://elibrary.ru/khmunh (in Russian)
69. Sørensen M., Poulsen A.H., Nøhr B., Khan J., Ketzel M., Brandt J., et al. Long term exposure to road traffic noise and air pollution and risk of infertility in men and women: nationwide Danish cohort study. BMJ. 2024; 386: e080664. https://doi.org/10.1136/bmj-2024-080664
Review
For citations:
Zemlyanova M.A., Koldibekova J.V., Kamenskikh D.M. Hygienic aspects of the exposure to chemical and physical environmental factors on reproductive health in men of fertile age (literature review). Hygiene and Sanitation. 2025;104(10):1296-1301. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-10-1296-1301. EDN: jgxrkv

































