Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Experimental study of the mechanism of action and comparative assessment of the toxicity of zinc-containing nano- and microparticles under subacute inhalation exposure

https://doi.org/10.47470/0016-9900-2025-104-10-1349-1355

EDN: veuayh

Abstract

Introduction. Zinc-containing nanoparticles in oxides, alloys with copper (brass), aluminum, magnesium, and other metals are produced in large volumes and applied in many spheres. This increases likelihood of exposure to them for the general population thereby creating elevated risks of new or more pronounced adverse effects in comparison with those produced by exposure to their micro-sized analogues.

The aim of this study. To analyze pathways specificity and comparatively assess toxicity of zinc-containing nanoparticles against micro-sized ones upon experimental sub-acute inhalation exposure exemplified by ZnO.

Materials and methods. We comparatively assessed chemical and physical properties of ZnO nanoparticles (NPs) and microsized particles (MPs), peculiarities of their biological distribution, accumulation, and toxic effects upon sub-acute inhalation exposure in the concentration equal to 0.5 mg/m3 in an experiment on rats.

Results. ZnO NPs and MPs have similar chemical composition but there is a huge difference (up to one million times) in physical properties. Due to it, NPs accumulate in a wider range of organs in higher concentrations (up to 1.3 times higher). NPs produce more pronounced (up to 2.5 times more against MPs) changes in biochemical and hematological indices of blood. We identified more pronounced pathomorphological changes in the brain, lungs, and the liver. The rats exposed to NPs tended to have change in behavioral response (1.5 times against those exposed to MPs).

Limitations. The study involved only sub-acute inhalation exposure simulated for female Wistar rats.

Conclusion. ZnO NPs and MPs have very different physical properties; NP peculiarities determine a wider range of organs for biodistribution and more intensive bioaccumulation. Exposure to NPs produces more pronounced adverse effects such as oxidative stress, cytolysis, inhibited thrombocytopoiesis, disrupted urea synthesis, imbalance of neuromediators, dysproteinemia; disrupted circulation in lung and brain tissues, inflammatory changes in liver parenchyma; developing stress reactions. Our findings allow developing more effective scientifically grounded preventive measures aimed at minimizing health risks upon airborne exposure to zinc-containing nanomaterials.

Compliance with ethical standards. The study was accomplished in conformity with the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS No. 123) and requirements of the Ethics Committee of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies (the Meeting Protocol No. 3 dated February 14, 2023).

Contributions:
Zaitseva N.V. — study concept and design;
Zemlyanova М.А. — data analysis and editing the text;
Stepankov М.S.
— data collection and analysis, writing the text;
Pustovalova О.V. — data collection and analysis;
Nikolaeva А.Е.
— data collection and analysis.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version

Conflict of interest. The authors declare no conflict of interest.

Funding. The study was funded from the Federal Budget.

Received: July 22, 2025 / Revised: August 29, 2025 / Accepted: October 15, 2025 / Published: November 14, 2025

About the Authors

Nina V. Zaitseva
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

DSc (Medicine), professor, academician of the RAS, scientific director, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: znv@fcrisk.ru



Marina A. Zemlyanova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University
Russian Federation

DSc (Medicine), professor, head, Department of biochemical and cytogenetic diagnostic methods, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: zem@fcrisk.ru



Mark S. Stepankov
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

Junior researcher, postgraduate student, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: stepankov@fcrisk.ru



Ol’ga V. Pustovalova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

Head, Biochemical and nanosensor diagnostics laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: pustovalova@fcrisk.ru



Alena E. Nikolaeva
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

Junior researcher, Elemental analysis laboratory, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: alena.nikolaeva95@yandex.ru



References

1. Pola A., Tocci M., Goodwin F.E. Review of microstructures and properties of zinc alloys. Metals. 2020; 10(2): 253. https://doi.org/10.3390/met10020253

2. Shah T., Surendar S., Singh S. Green synthesis of zinc oxide nanoparticles using ananas comosus extract: preparation, characterization, and antimicrobial efficacy. Cureus. 2023; 15(10): e47535. https://doi.org/10.7759/cureus.47535

3. Adil M., Bashir S., Bashir S., Aslam Z., Ahmad N., Younas T., et al. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Front. Plant. Sci. 2022; 13: 932861. https://doi.org/10.3389/fpls.2022.932861

4. Gauba A., Hari S.K., Ramamoorthy V., Shanmugaiah V., Ganesan G., Arasu M.V. The versatility of green synthesized zinc oxide nanoparticles in sustainable agriculture: A review on metal-microbe interaction that rewards agriculture. Physiol. Mol. Plant Pathol. 2023; 125: 102023. https://doi.org/10.1016/j.pmpp.2023.102023

5. Youn S.M., Choi S.J. Food additive zinc oxide nanoparticles: dissolution, interaction, fate, cytotoxicity, and oral toxicity. Int. J. Mol. Sci. 2022; 23(11): 6074. https://doi.org/10.3390/ijms23116074

6. Espitia P.J.P., Otoni C.G., Soares N.F.F. Zinc oxide nanoparticles for food packaging applications. In: Barros-Velázquez J., ed. Antimicrobial Food Packaging. Elsevier; 2016: 425–31. https://doi.org/10.1016/B978-0-12-800723-5.00034-6

7. Nisansala H.M.D., Rajapaksha G.K.M., Dikella D.G.N.V., Dheerasinghe M., Sirimuthu N.M.S., Patabendige C.N.K. Zinc oxide nanostructures in the textile industry. Indian Journal of Science and Technology. 2021; 14(46): 3370–95. https://doi.org/10.17485/IJST/v14i46.1052

8. Rahman H.S., Othman H.H., Abdullah R., Edin H.Y.A.S., Al-Haj N.A. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet. Med. Sci. 2022; 8(4): 1769–79. https://doi.org/10.1002/vms3.814

9. Fernández-Bertólez N., Alba-González A., Touzani A., Ramos-Pan L., Méndez J., Reis A.T., et al. Toxicity of zinc oxide nanoparticles: Cellular and behavioural effects. Chemosphere. 2024; 363: 142993. https://doi.org/10.1016/j.chemosphere.2024.142993

10. Singh R., Cheng S., Singh S. Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech. 2020; 10(2): 66. https://doi.org/10.1007/s13205-020-2054-4

11. Aude-Garcia C., Dalzon B., Ravanat J.L., Collin-Faure V., Diemer H., Strub J.M., et al. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. J. Proteomics. 2016; 134: 174–85. https://doi.org/10.1016/j.jprot.2015.12.013

12. Pinho A.R., Martins F., Costa M.E.V., Senos A.M.R., Silva O.A.B.D.C.E., Pereira M.L., et al. In vitro cytotoxicity effects of zinc oxide nanoparticles on spermatogonia cells. Cells. 2020; 9(5): 1081. https://doi.org/10.3390/cells9051081

13. Almansour M.I., Alferah M.A., Shraideh Z.A., Jarrar B.M. Zinc oxide nanoparticles hepatotoxicity: Histological and histochemical study. Environ. Toxicol. Pharmacol. 2017; 51: 124–30. https://doi.org/10.1016/j.etap.2017.02.015

14. Tian L., Lin B., Wu L., Li K., Liu H., Yan J., et al. Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci. Rep. 2015; 5: 16117. https://doi.org/10.1038/srep16117

15. Zemlyanova M.A., Stepankov M.S. Features of toxic effect due to biodistribution and bio-accumulation of nano and microparticles of copper (II) oxide. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2024; 103(5): 477–82. https://doi.org/10.47470/0016-9900-2024-103-5-477-482 https://elibrary.ru/pndofm (in Russian)

16. Zemlyanova M.A., Zaitseva N.V., Stepankov M.S., Ignatova A.M. Sub-acute inhalation exposure to aluminum oxide nanoparticles and its effects on wistar rats as opposed to the micro-sized chemical analog. Pharm. Nanotechnol. 2024; 12(5): 438–48. https://doi.org/10.2174/0122117385258822230926043845

17. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity [Adsorbtsiya, udel’naya poverkhnost’, poristost’]. Moscow: Mir; 1984. https://elibrary.ru/ztyaxd (in Russian)

18. Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951; 73: 373–80.

19. Chithrani B.D., Ghazani A.A., Chan W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006; 6(4): 662–8. https://doi.org/10.1021/nl052396o

20. Liu Z., Lv X., Xu L., Liu X., Zhu X., Song E., et al. Zinc oxide nanoparticles effectively regulate autophagic cell death by activating autophagosome formation and interfering with their maturation. Part. Fibre Toxicol. 2020; 17(1): 46. https://doi.org/10.1186/s12989-020-00379-7

21. Choudhury S.R., Ordaz J., Lo C.L., Damayanti N.P., Zhou F., Irudayaraj J. From the cover: zinc oxide nanoparticles-induced reactive oxygen species promotes multimodal cyto- and epigenetic toxicity. Toxicol. Sci. 2017; 156(1): 261–74. https://doi.org/10.1093/toxsci/kfw252

22. Jain A.K., Singh D., Dubey K., Maurya R., Pandey A.K. Zinc oxide nanoparticles induced gene mutation at the HGPRT locus and cell cycle arrest associated with apoptosis in V-79 cells. J. Appl. Toxicol. 2019; 39(5): 735–50. https://doi.org/10.1002/jat.3763

23. Sharma V., Anderson D., Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012; 17(8): 852–70. https://doi.org/10.1007/s10495-012-0705-6

24. Czyżowska A., Barbasz A., Rudolphi-Szydło E., Dyba B. The cell membrane as the barrier in the defense against nanoxenobiotics: Zinc oxide nanoparticles interactions with native and model membrane of melanoma cells. J. Appl. Toxicol. 2022; 42(2): 334–41. https://doi.org/10.1002/jat.4216

25. Khan M., Naqvi A.H., Ahmad M. Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol. Rep. 2015; 2: 765–74. https://doi.org/10.1016/j.toxrep.2015.02.004

26. Mendoza-Milla C., Macías Macías F.I., Velázquez Delgado K.A., Herrera Rodríguez M.A., Colín-Val Z., Ramos-Godinez M.D.P., et al. Zinc oxide nanoparticles induce toxicity in H9c2 rat cardiomyoblasts. Int. J. Mol. Sci. 2022; 23(21): 12940. https://doi.org/10.3390/ijms232112940

27. Wang L., Wang L., Ding W., Zhang F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol. 2010; 10(12): 8617–24. https://doi.org/10.1166/jnn.2010.2483

28. Zhuo L.B., Liu Y.M., Jiang Y., Yan Z. Zinc oxide nanoparticles induce acute lung injury via oxidative stress-mediated mitochondrial damage and NLRP3 inflammasome activation: In vitro and in vivo studies. Environ. Pollut. 2024; 341: 122950. https://doi.org/10.1016/j.envpol.2023.122950

29. Alhoqail W.A., Alothaim A.S., Suhail M., Iqbal D., Kamal M., Asmari M.M., et al. Husk-like zinc oxide nanoparticles induce apoptosis through ROS generation in epidermoid carcinoma cells: effect of incubation period on sol-gel synthesis and anti-cancerous properties. Biomedicines. 2023; 11(2): 320. https://doi.org/10.3390/biomedicines11020320

30. Thakur S., Kumar V., Das R., Sharma V., Mehta D.K. Biomarkers of hepatic toxicity: an overview. Curr. Ther. Res. Clin. Exp. 2024; 100: 100737. https://doi.org/10.1016/j.curtheres.2024.100737

31. Karakas D., Xu M., Ni H. GPIbα is the driving force of hepatic thrombopoietin generation. Res. Pract. Thromb. Haemost. 2021; 5(4): e12506. https://doi.org/10.1002/rth2.12506

32. Thomsen K.L., Grønbæk H., Glavind E., Hebbard L., Jessen N., Clouston A., et al. Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function. Am. J. Physiol. Gastrointest. Liver Physiol. 2014; 307(3): G295–301. https://doi.org/10.1152/ajpgi.00036.2014

33. De Chiara F., Heebøll S., Marrone G., Montoliu C., Hamilton-Dutoit S., Ferrandez A., et al. Urea cycle dysregulation in non-alcoholic fatty liver disease. J. Hepatol. 2018; 69(4): 905–15. https://doi.org/10.1016/j.jhep.2018.06.023

34. De Chiara F., Thomsen K.L., Habtesion A., Jones H., Davies N., Gracia-Sancho J., et al. Ammonia scavenging prevents progression of fibrosis in experimental nonalcoholic fatty liver disease. Hepatology. 2020; 71(3): 874–92. https://doi.org/10.1002/hep.30890

35. Albano G.D., Gagliardo R.P., Montalbano A.M., Profita M. Overview of the mechanisms of oxidative stress: impact in inflammation of the airway diseases. Antioxidants (Basel). 2022; 11(11): 2237. https://doi.org/10.3390/antiox11112237

36. Aschner M., Skalny A.V., Lu R., Martins A.C., Tsatsakis A., Miroshnikov S.A., et al. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem. Biol. Interact. 2024; 403: 111245. https://doi.org/10.1016/j.cbi.2024.111245

37. Chen D., Lou Q., Song X.J., Kang F., Liu A., Zheng C., et al. Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice. Nat. Commun. 2024; 15(1): 449. https://doi.org/10.1038/s41467-024-44704-6

38. Ghit A., Assal D., Al-Shami A.S., Hussein D.E.E. GABAA receptors: structure, function, pharmacology, and related disorders. J. Genet. Eng. Biotechnol. 2021; 19(1): 123. https://doi.org/10.1186/s43141-021-00224-0

39. Balint B., Jepchumba V.K., Guéant J.L., Guéant-Rodriguez R.M. Mechanisms of homocysteine-induced damage to the endothelial, medial and adventitial layers of the arterial wall. Biochimie. 2020; 173: 100–6. https://doi.org/10.1016/j.biochi.2020.02.012

40. Peng J., Zhu G., Xiao S., Liu S. Elevated homocysteine levels predict hospital-acquired pneumonia and poor functional outcomes in primary intracerebral hemorrhage. Front. Neurol. 2022; 13: 926963. https://doi.org/10.3389/fneur.2022.926963

41. Wu Q., Liu J., Wang Y., Cheng Y., Liu M. Higher serum homocysteine levels are associated with an increased risk of hemorrhagic transformation in patients with acute ischemic stroke. BMC Neurol. 2023; 23(1): 103. https://doi.org/10.1186/s12883-023-03137-2

42. Zhou Z., Liang Y., Qu H., Zhao M., Guo F., Zhao C., et al. Plasma homocysteine concentrations and risk of intracerebral hemorrhage: a systematic review and meta-analysis. Sci. Rep. 2018; 8(1): 2568. https://doi.org/10.1038/s41598-018-21019-3


Review

For citations:


Zaitseva N.V., Zemlyanova M.A., Stepankov M.S., Pustovalova O.V., Nikolaeva A.E. Experimental study of the mechanism of action and comparative assessment of the toxicity of zinc-containing nano- and microparticles under subacute inhalation exposure. Hygiene and Sanitation. 2025;104(10):1349-1355. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-10-1349-1355. EDN: veuayh

Views: 10


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)