Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Assessment of the safety of food azo dyes in the Ames test

https://doi.org/10.47470/0016-9900-2025-104-11-1480-1485

EDN: regedb

Abstract

Introduction. Synthetic food dyes (FD) have a number of advantages over natural ones and are increasingly used in the production of preparations and food products, which in turn increases attention to the issue of their safety. The safety assessment of FD includes testing for mutagenicity in “in vitro” and “in vivo” tests.

The aim of the work. To determine the mutagenic activity of the four most common synthetic FDs from the azo dyes (PaD) group in food products on the domestic market.

Materials and methods. The mutagenic activity of Sunset Yellow FCF, Tartrazine, Ponceau 4R, and Azorubine was assessed in the preincubation version of the Ames test on test strains of S. typhimurium TA1535, TA100, TA98, TA97, TA102 in the dose range of 8–5000 µg/plate with the addition of riboflavin to the microsomal activating mixture.

Results. No dependence of the frequency of revertant colonies on the concentration of the studied dyes was found, and the excess of the average number of colonies per dish in the experimental variants over the control was less than twofold, which indicates the absence of a mutagenic effect of the studied FaD samples.

Limitations. The study is limited to examining the mutagenicity of food azo dye samples in a single test that takes into account gene mutations in bacteria.

Conclusion. Sunset Yellow FCF, Tartrazine, Ponceau 4R, and Azorubine did not induce gene mutations in the Ames test.

Compliance with ethical standards. The study does not require the submission of a conclusion of the biomedical ethics committee or other documents.

Contribution:
Akhaltseva L.V. – search, analysis of literature data, setting up experiments, writing the article;
Yurchenko V.V. – analysis of literature data, editing the article;
Nikitina T.A. – search for literature sources, setting up experiments;
Mamonov R.A. – research concept, editing the article;
Vodyanova M.A. – editing the article.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. The work was carried out within the framework of the state task «Complex system for assessing the genotoxicity of food additives» Centre for Strategic Planning of the Federal medical and biological agency.

Received: May 29, 2025 / Revised: July 1, 2025 / Accepted: October 15, 2025 / Published: December 19, 2025

About the Authors

Lyudmila V. Akhaltseva
Centre for Strategic Planning of the Federal medical and biological agency
Russian Federation

PhD (Biology), senior researcher, Department of preventive toxicology and biomedical research, Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: LAhalceva@cspfmba.ru



Valentina V. Yurchenko
Centre for Strategic Planning of the Federal medical and biological agency
Russian Federation

PhD (Medicine), leading researcher, Department of preventive toxicology and biomedical research, Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: VYurchenko@cspfmba.ru



Tatyana A. Nikitina
Centre for Strategic Planning of the Federal medical and biological agency
Russian Federation

Biologist, Department of preventive toxicology and biomedical research, Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: TNikitina@cspfmba.ru



Roman A. Mamonov
Centre for Strategic Planning of the Federal medical and biological agency
Russian Federation

PhD (Medicine), head, Department of preventive toxicology and biomedical research, Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: RMamonov@cspfmba.ru



Mariya A. Vodyanova
Centre for Strategic Planning of the Federal medical and biological agency
Russian Federation

PhD (Biology), scientific secretary of the Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: MVodyanova@cspfmba.ru



References

1. de Oliveira Z.B., Silva da Costa D.V., da Silva Dos Santos A.C., da Silva Júnior A.Q., de Lima Silva A., de Santana R.C.F., et al. Synthetic colors in food: a warning for children’s health. Int. J. Environ. Res. Public Health. 2024; 21(6): 682. https://doi.org/10.3390/ijerph21060682

2. Sadighara P., Safta M., Limam I., Ghanati K., Nazari Z., Karami M., et al. Association between food additives and prevalence of allergic reactions in children: a systematic review. Rev. Environ. Health. 2022; 38(1): 181–6. https://doi.org/10.1515/reveh-2021-0158

3. Miller M.D., Steinmaus C., Golub M.S., Castorina R., Thilakartne R., Bradman A., et al. Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence. Environ. Health. 2022; 21(1): 45. https://doi.org/10.1186/s12940-022-00849-9

4. Kirkland A.E., Langan M.T., Holton K.F. Artificial food coloring affects EEG power and ADHD symptoms in college students with ADHD: a pilot study. Nutr. Neurosci. 2022; 25(1): 159–68. https://doi.org/10.1080/1028415X.2020.1730614

5. EFSA panel of food additives and nutrient sources added to food (ANS). Guidance for submission for food additive evaluations. ESFA Journal. 2012; 10(7): 2760. https://doi.org/10.2903/j.esfa.2012.2760

6. Commission Regulation (EU) No. 231/2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No. 1333/2008 of the European Parliament and of the Council. Available at: https://data.europa.eu/eli/reg/2012/231/oj

7. Matsushima M., Sugimura T., Nagao M., Yahagi T., Shirai A., Sawamura M. Factors modulating mutagenicity microbial tests. In: Norpoth K.H., Garner R.C., eds. Short-Term Test Systems for Detecting Carcinogens. Berlin-Heidelberg-New York: Springer; 1980: 273–85.

8. Prival M.J., Bell S.J., Mitchell V.D., Peiperl M.D., Vaughan V.L. Mutagenicity of benzidine and benzidine-congener dyes and selected monoazo dyes in a modified Salmonella assay. Mutat. Res. 1984; 136(1): 33–47. https://doi.org/10.1016/0165-1218(84)90132-0

9. Mortelmans K., Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000; 455(1–2): 29–60. https://doi.org/10.1016/s0027-5107(00)00064-6

10. Barciela P., Perez-Vazquez A., Prieto M.A. Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation. Food Chem. Toxicol. 2023; 178: 113935. https://doi.org/10.1016/j.fct.2023.113935

11. Sweeney E.A., Chipman J.K., Forsythe S.J. Evidence for direct-acting oxidative genotoxicity by reduction products of azo dyes. Environ. Health Perspect. 1994; 102(Suppl. 6): 119–22. https://doi.org/10.1289/ehp.94102s6119

12. Josephy P.D., Allen-Vercoe E. Reductive metabolism of azo dyes and drugs: Toxicological implications. Food Chem. Toxicol. 2023; 178: 113932. https://doi.org/10.1016/j.fct.2023.113932

13. Elder R., Vancuren S.J., Botschner A.J., Josephy P.D., Allen-Vercoe E. Metabolism of azo food dyes by bacterial members of the human gut microbiome. Anaerobe. 2023; 83: 102783. https://doi.org/10.1016/j.anaerobe.2023.102783

14. Münzner R., Wever J. Mutagenic activity of the feces of rats following oral administration of tartrazine. Arch. Toxicol. 1987; 60(4): 328–30. https://doi.org/10.1007/BF01234674

15. Wever J., Münzner R, Renner H.W. Testing of sunset yellow and orange II for genotoxicity in different laboratory animal species. Environ. Mol. Mutagen. 1989; 13(3): 271–6. https://doi.org/10.1002/em.2850130311

16. Henschler D., Wild D. Mutagenic activity in rat urine after feeding with the azo dye tartrazine. Arch. Toxicol. 1985; 57(3): 214–5. https://doi.org/10.1007/BF00290891

17. Rafii F., Hall J.D., Cerniglia C.E. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem. Toxicol. 1997; 35(9): 897–901. https://doi.org/10.1016/s0278-6915(97)00060-4

18. Prival M.J., Davis V.M., Peiperl M.D., Bell S.J. Evaluation of azo food dyes fоr mutagenicity by method using Salmonella typhimurium. Mut. Res. 1988; 206(2): 247–59. https://doi.org/10.1016/0165-1218(88)90168-1

19. Haveland-Smith R.B., Combes R.D. Screening of food dyes for genotoxic activity. Food Cosmet. Toxicol. 1980; 18(3): 215–21. https://doi.org/10.1016/0015-6264(80)90097-8

20. Chung K.T., Fulk G., Andrews A. Mutagenicity testing of some commonly used dyes. Appl. Environ. Microbiol. 1981; 42(4): 641–8. https://doi.org/10.1128/aem.42.4.641-648.1981

21. Garner R.C., Nutman C.A. Testing of some azo dyes and their reduction products for mutagenicity using Salmonella typhimurium TA 1538. Mutat. Res. 1977; 44(1): 9–19. https://doi.org/10.1016/0027-5107(77)90110-5

22. Wever J., Münzner R., Renner H.W. Testing of sunset yellow and orange II for genotoxicity in different laboratory animal species. Environ. Mol. Mutagen. 1989; 13(3): 271–6. https://doi.org/10.1002/em.2850130311

23. Brown P.J., Roehm W.G., Brown J.R. Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Salmonella/microsome system. Mutat. Res. 1978; 56(3): 249–71. https://doi.org/10.1016/0027-5107(78)90192-6

24. Ishidate M. Jr., Sofuni T., Yoshikawa K., Hayashi M., Nohmi T., Sawada M., et al. Primary mutagenicity screening of food additives currently used in Japan. Food Chem. Toxicol. 1984; 22(8): 623–36. https://doi.org/10.1016/0278-6915(84)90271-0

25. Izbirak A., Sümer S., Diril N. Mutagenicity testing of some azo dyes used as food additives. Mikrobiyol. Bul. 1990; 24(1): 48–56.

26. Brown J.P., Dietrich P.S. Mutagenicity of selected sulfonated azo dyes in the Salmonella/microsome assay: use of aerobic and anaerobic activation procedures. Mutat. Res. 1983; 116: 305–15. https://doi.org/10.1016/0165-1218(83)90068-x

27. Kawachi T., Yahagi T., Kada T., Tazima Y., Ishidate M., Sasaki M., et al. Cooperative programme on short-term assays for carcinogenicity in Japan. IARC Sci. Publ. 1980; (27): 323–30.

28. Prival M.J., Mitchell V.D. Analysis of a method for testing azo dyes for mutagenic activity in Salmonella typhimurium in the presence of flavin mononucleotide and hamster liver S9. Mutat. Res. 1982; 97(2): 103–15. https://doi.org/10.1016/0165-1 161(82)90008-5

29. Pollastrini M.T., Barea M., Salas J. Genotoxic study of commercial dyes with tartrazine base in S. typhimurium his- and E. coli trp-. Rev. Sanid. Hig. Publica (Madr). 1990; 64(3-4): 203–9.

30. Das A., Mukherjee A. Genotoxicity testing of the food colours amaranth and tartrazine. Int. J. Hum. Genet, 2004; 4(4): 277–80. https://doi.org/10.1080/09723757.2004.1 1885906

31. Atri R., Singh A., Mathur N., Verma A. Utilization of microbial bioassays for screening the possible toxicity in regularly used food dyes. J. Chem. Biol. Phys. Sci. 2014; 4(2): 1248–57.

32. dos Santos T.C., Zocolo G.J., Morales D.A., Umbuzeiro G. de A., Zanoni M.V. Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine. Food Chem. Toxicol. 2014; 68: 307–15. https://doi.org/10.1016/j.fct.2014.03.025

33. Merville M.P., Decuyper J., Lopez M., Piette J., Van de Vorst A. Phototoxic potentialities of tartrazine: screening tests. Photochem. Photobiol. 1984; 40(2): 221–6. https://doi.org/10.1111/j.1751-1097.1984.tb04579.x

34. Ozaki A., Kitano M., Itoh N., Kuroda K., Furusawa N., Masuda T., et al. Mutagenicity and DNA-damaging activity of decomposed products of food colours under UV irradiation. Food Chem. Toxicol. 1998; 36(9–10): 811–7. https://doi.org/10.1016/s0278-6915(98)00039-8

35. Cameron T.P., Hughes T.J., Kirby P.E., Fung V.A., Dunkel V.C. Mutagenic activity of 27 dyes and related chemicals in the salmonella/microsome and mouse lymphoma TK+/− assays. Mutat. Res. 1987; 189(3): 223–61. https://doi.org/10.1016/0165-1218(87)90056-5

36. Ponomarev A.V., Kholodkova E.M., Zotova I.V., Shumega A.R., Stepchenkova E.I. Radiolytic inactivation of Ponceau 4R mutagenicity in aqueous solution. Khimiya vysokikh energii. 2023; 57(5): 415–8. https://doi.org/10.31857/S002311932305011X https://elibrary.ru/mzivsk (in Russian)

37. Strelkova Yu.N. Determination of genotoxic and mutagenic properties of the dye Ponso 4R (E124) using the Ames test. In: World Science Priorities: New Approaches and Current Research. Collection of Scientific Works Based on the Materials of the 6th International Scientific and Practical Conference [Prioritety mirovoi nauki: novye podkhody i aktual’nye issledovaniya. Sbornik nauchnykh trudov po materialam VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii]. Anapa; 2020: 68–72. https://elibrary.ru/wufvbx

38. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from the Commission to Review the toxicology of a number of dyes illegally present in food in the EU Question number EFSA-2005-082. EFSA J. 2005; 263: 1–71.

39. Jongen W.M., Aiink G.M. Enzyme-mediated mutagenicity in Salmonella typhimurium of contaminants of synthetic indigo products. Food Chem. Toxicoi. 1982; 20(6): 917–20. https://doi.org/10.1016/s0015-6264(82)80228-9

40. Akhaltseva L.V., Yurchenko V.V., Yurtseva N.A., Konyashkina M.A. Evaluation of the genotoxicity of the food dye tartrazine in a micronucleus test in vivo. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(7): 798–801. https://doi.org/10.47470/0016-9900-2022-101-7-798-801 https://elibrary.ru/ouulgn (in Russian)

41. Nikitina T.A., Konyashkina M.A., Ingel F.I., Akhaltseva L.V. Evaluation of the genotoxic effect of tartrazine using a metabolic activation system in human lymphocyte culture under cytokinetic block conditions. Ekologicheskaya genetika. 2023; 21(1): 45–51. https://doi.org/10.17816/ecogen117502 https://elibrary.ru/vadcqs (in Russian)

42. Akhaltseva L.V., Yurchenko V.V., Yurtseva N.A., Konyashkina M.A. Evaluation of the genotoxicity of the food dye sunset yellow FCF in a micronucleus test in vivo. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(9): 1093–7. https://doi.org/10.47470/0016-9900-2022-101-9-1093-1097 https://elibrary.ru/zwhjps (in Russian)

43. Yurchenko V.V., Akhaltseva L.V., Konyashkina M.A., Yurtseva N.A. Evaluation of the cytogenetic activity of the food dye azorubine in a micronucleus test in mice. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2023; 102(6): 580–3. https://doi.org/10.47470/0016-9900-2023-102-6-580-583 https://elibrary.ru/qhujwy (in Russian)

44. Yurchenko V.V., Akhaltseva L.V., Yurtseva N.A., Konyashkina M.A., Lebedev A.S. Evaluation of mutagenic activity of the food dye ponceau 4r in a micronuclear test in mice. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2023; 102(11): 1210–4. https://doi.org/10.47470/0016-9900-2023-102-11-1210-1214 https://elibrary.ru/riwbwa (in Russian)


Review

For citations:


Akhaltseva L.V., Yurchenko V.V., Nikitina T.A., Mamonov R.A., Vodyanova M.A. Assessment of the safety of food azo dyes in the Ames test. Hygiene and Sanitation. 2025;104(11):1480-1485. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-11-1480-1485. EDN: regedb

Views: 26


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)