Preview

Гигиена и санитария

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Антибиотические свойства низина в контексте его применения в качестве пищевой добавки

https://doi.org/10.47470/0016-9900-2020-99-7-704-711

Полный текст:

Аннотация

Введение. Известно, что микробные патогены могут вырабатывать резистентность к множественным антибактериальным препаратам. Пищевые добавки, в частности консерванты, также могут способствовать повышению устойчивости микроорганизмов - загрязнителей пищевых продуктов к противомикробным препаратам. В данной статье показано, что лантибиотик низин проявляет все свойства, характерные для антибиотиков, а именно: способствует развитию антибиотикорезистентности патогенных и условно патогенных микроорганизмов, снижению иммунного статуса организма, развитию дисбаланса микробиоценоза кишечника, оказывает влияние на обмен веществ организма посредством регуляции транскрипции ДНК.

Цель - оценить риски применения низина (Е234) с учётом его влияния на биологические свойства микроорганизмов - загрязнителей пищевой продукции.

Материал и методы. Расчёт потребления низина с пищей в соответствии с условиями сценариев 1 и 2 проводили с учётом массы тела потребителей различных возрастных групп населения России в программе Excel. Проведён анализ научных данных о биологических свойствах низина, в том числе о способности формировать к нему резистентность микроорганизмов.

Результаты и заключение. Впервые показано, что расчётные количества пищевой добавки-консерванта низина (Е234) в кишечном содержимом превышают его минимальные ингибирующие концентрации для представителей нормофлоры ЖКТ человека у населения всех возрастов от 40 до 27 064 раз, в зависимости от сценария потребления (при минимальном и максимальном уровнях воздействия). Доказано, что безопасность низина, используемого в качестве пищевой добавки, нуждается в переоценке с учётом его значительного вклада в устойчивость к противомикробным препаратам пищевых патогенов.

Об авторах

Ольга Викторовна Багрянцева
ФГБУН «Федеральный исследовательский центр питания, биотехнологии и безопасности пищи»; ФГАОУ ВО «Первый московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет)»
Россия
Доктор биол. наук, вед. науч. сотр. лаб. пищевой токсикологии и оценки безопасности нанотехнологий ФГБУН «ФИЦ питания и биотехнологии», проф. кафедры гигиены питания и токсикологии ИПО ФГАОУ ВО «Первый Московский государственный
медицинский университет им. И.М. Сеченова» МЗ РФ, 119991, Москва.


С. А. Хотимченко
ФГБУН «Федеральный исследовательский центр питания, биотехнологии и безопасности пищи»; ФГАОУ ВО «Первый московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет)»
Россия


А. С. Петренко
EAS Strategies
Россия


С. А. Шевелева
ФГБУН «Федеральный исследовательский центр питания, биотехнологии и безопасности пищи»
Россия


О. В. Арнаутов
Евразийская экономическая комиссия
Россия


Е. В. Елизарова
ФГАОУ ВО «Первый московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет)»
Россия


Список литературы

1. Roca I., Akova M., Baquero F., Carlet J., Cavaleri M., Coenen S. et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015; 6: 22–9. https://doi.org/10.1016/j.nmni.2015.02.007

2. Hiltunen T., Virta M., Laine A.L. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1712): 20160039. https://doi.org/10.1098/rstb.2016.0039

3. Romero D., Traxler M.F., López D., Kolter R. Antibiotics as signal molecules. Chem Rev. 2011; 111(9): 5492-505. https://doi.org/10.1021/cr2000509

4. Шевелёва С.А. Антибиотикоустойчивые микроорганизмы в пище как гигиеническая проблема (обзорная статья). Гигиена и санитария. 2018; 97(4): 342–54. https://doi.org/10.18821/0016-9900-2018-97-4-342-354

5. Draper L.A., Cotter P.D., Hill C., Ross R.P. Lantibiotic resistance. Microbiol Mol Biol Rev. 2015; 79(2): 171–91. https://doi.org/10.1128/mmbr.00051-14

6. Nhung N.T., Van N.T.B., Cuong N.V., Duong T.T.Q., Nhat T.T., Hang T.T.T. et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal salmonella from meat sold at wet markets and supermarkets in Vietnam. Int J Food Microbiol. 2018; 266: 301–9. https://doi.org/10.1016/j.ijfoodmicro.2017.12.015

7. WHO. Antimicrobial Resistance: Global Report on Surveillance; 2014. Available at: http://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

8. Mazzotta A.S., Montville T.J. Characterization of fatty acid composition, spore germination, and thermal resistance in a nisin-resistant mutant of Clostridium botulinum 169b and in the wild-type strain. Appl Environ Microbiol. 1999; 65(2): 659–64.

9. Collins B., Guinane C.M., Cotter P.D., Hill C., Ross R.P. Assessing the contributions of the LiaS histidine kinase to the innate resistance of Listeria monocytogenes to nisin, cephalosporins, and disinfectants. Appl Environ Microbiol. 2012; 78(8): 2923–9. https://doi.org/10.1128/aem.07402-11

10. Bergholz T.M., Tang S., Wiedmann M., Boor K.J. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR. Appl Environ Microbiol. 2013; 79(18): 5682–8. https://doi.org/10.1128/aem.01797-13

11. Campion A., Casey P.G., Field D., Cotter P.D., Hill C., Ross R.P. In vivo activity of nisin A and nisin V against Listeria monocytogenes in mice. BMC Microbiol. 2013; 13: 23. https://doi.org/10.1186/1471-2180-13-23

12. Pushpanathan M., Gunasekaran P., Rajendhran J. Antimicrobial peptides: versatile biological properties. Int J Pept. 2013; 2013: 675391. https://doi.org/10.1155/2013/675391

13. Kruszewska D., Sahl H.G., Bierbaum G., Pag U., Hynes S.O., Ljungh A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother. 2004; 54(3): 648–53. https://doi.org/10.1093/jac/dkh387

14. Bechinger B., Gorr S.U. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017; 96(3): 254–60. https://doi.org/10.1177/0022034516679973

15. Tong Z., Zhang Y., Ling J., Ma J., Huang L., Zhang L. An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS One. 2014; 9(2): e89209. https://doi.org/10.1371/journal.pone.0089209

16. Nawrocki K., Crispell E., McBride S. Antimicrobial peptide resistance mechanisms of gram-positive bacteria. Antibiotics. 2014; 3(4): 461–92. https://doi.org/10.3390/antibiotics3040461

17. Mathur H., Field D., Rea M.C., Cotter P.D., Hill C., Ross R.P. Bacteriocin-antimicrobial synergy: a medical and food perspective. Front Microbiol. 2017; 8: 1205. https://doi.org/10.3389/fmicb.2017.01205

18. Mathur H., Field D., Rea Mary C., Cotter P.D., Hill C., Ross R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes. 2018; 4: 9. https://doi.org/10.1038/s41522-018-0053-6

19. Food Consumption. All Households, Kg/Year/Person 2014. Available at: http://www.gks.ru/search?q=потребление+пищевых+продуктов

20. Combined Compendium of Food Additive Specification. Available at: http://www.fao.org/fileadmin/user_upload/jecfa_additives/docs/monograph14/additive-295-m14.pdf

21. Hurst A. Nisin. Adv Appl Microbiol. 1981; 27: 85–123. https://doi.org/10.1016/s0065-2164(08)70342-3

22. Технический регламент Таможенного союза 029/2012. Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств.

23. Nisin. In: World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Seventh Report of the Joint Fao/Who Expert Committee on Food Additives. Technical Report Series. Malta; 2013.

24. European Food Safety Authority (EFSA). Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to the safety in use of nisin as a food additive in an additional category of liquid eggs. EFSA J. 2006; 4(12): 314b. https://doi.org/10.2903/j.efsa.2006.314b

25. Younes M., Aggett P., Aguilar F., Crebelli R., Dusemund B., Filipi M. et al. Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA J. 2017; 15(12): e05063. https://doi.org/10.2903/j.efsa.2017.5063

26. Severina E., Severin A., Tomasz A. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J Antimicrob Chemother. 1998; 41(3): 341–7. https://doi.org/10.1093/jac/41.3.341

27. Malanovic N., Lohner K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (Basel). 2016; 9(3): 59. https://doi.org/10.3390/ph9030059

28. Kingston A.W., Liao X., Helmann J.D. Contributions of the σ(W), σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol. 2013; 90(3): 502–18. https://doi.org/10.1111/mmi.12380

29. Sun Z., Li P., Liu F., Bian H., Wang D., Wang X. et al. Synergistic antibacterial mechanism of the Lactobacillus crispatus surface layer protein and nisin on Staphylococcus saprophyticus. Sci Rep. 2017; 7(1): 265. https://doi.org/10.1038/s41598-017-00303

30. Sun Z., Zhong J., Liang X., Liu J., Chen X., Huan L. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother. 2009; 53(5): 1964–73. https://doi.org/10.1128/aac.01382-08

31. Dielbandhoesing S.K., Zhang H., Caro L.H., van der Vaart J.M., Klis F.M., Verrips C.T. et al. Specific cell wall proteins confer resistance to nisin upon yeast cells. Appl Environ Microbiol. 1998; 64(10): 4047–52.

32. Biswaro L.S., da Costa Sousa M.G., Rezende T.M.B., Dias S.C., Franco O.L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol. 2018; 9: 855. https://doi.org/10.3389/fmicb.2018.00855

33. Joo N.E., Ritchie K., Kamarajan P., Miao D., Kapila Y.L. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012; 1(3): 295–305. https://doi.org/10.1002/cam4.35

34. Zainodini N., Hassanshahi G., Hajizadeh M., Falahati-Pour S.K., Mahmoodi M., Mirzaei M.R. Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac J Cancer Prev. 2018; 19(8): 2217–22. https://doi.org/10.22034/APJCP.2018.19.8.2217

35. Zhang J., Caiyin Q., Feng W., Zhao X., Qiao B., Zhao G., et al. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Sci Rep. 2016; 6: 27973. https://doi.org/10.1038/srep27973

36. Zhou L., Wang L., Tian P., Bao T., Li L., Zhao X. The LiaFSR and BsrXRS systems contribute to bile salt resistance in enterococcus faecium isolates. Front Microbiol. 2019, 10: 1048. https://doi.org/10.3389/fmicb.2019.01048

37. Kaczor A.A., Polski A., Sobotka-Polska K., Pachuta-Stec A., Makarska B.M., Pitucha M. Novel antibacterial compounds and their drug targets – successes and challenges. Curr Med Chem. 2017; 24(18): 1948–82. https://doi.org/10.2174/0929867323666161213102127

38. Bengtsson-Palme J., Kristiansson E., Larsson D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018; 42(1): fux053. https://doi.org/10.1093/femsre/fux053

39. Guidelines for Simple Evaluation of Dietary Exposure to Food Additives CXG 3-1989 Available at: http:// http://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/

40. Codex Alimentarius Commission. The General Standard for Food Additives. CODEX Stan 192-1995. Geneva; 1995. Available at: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B192-1995%252FCXS_192e.pdf

41. WHO. The 47th meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Toxicological Evaluation of Certain Veterinary Drug Residues in Food. Geneva; 1996. Available at: http://www.who.int/foodsafety/publications/jecfa-reports/en/

42. Revilla-Guarinos A., Gebhard S., Alcántara C., Staro A., Mascher T., Zúñiga M. Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23. Appl Environ Microbiol. 2013; 79(10): 3160–70. https://doi.org/10.1128/aem.00178-13

43. Józefiak D., Kieroczyk B., Jukiewicz J., Zduczyk Z., Rawski M., Dugosz J. et al. Dietary Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One. 2013; 8(12): e85347. https://doi.org/10.1371/journal.pone.0085347

44. Kawada-Matsuo M., Yoshida Y., Zendo T., Nagao J., Oogai Y., Nakamura Y. et al. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus. PLoS One. 2013; 8(7): e69455. https://doi.org/10.1371/journal.pone.0069455

45. Zhou H., Fang J., Tian Y., Lu X.Y. Mechanisms of nisin resistance in Gram-positive bacteria. Ann Microbiol. 2013; 64(2): 413–20. https://doi.org/10.1007/s13213-013-0679-9

46. Shin J., Gwak J., Kamarajan P., Fenno J., Rickard A., Kapila Y. Biomedical applications of Nisin. J Appl Microbiol. 2016; 120(6): 1449–65. https://doi.org/10.1111/jam.13033

47. Roy R., Tiwari M., Donelli G., Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2017; 9(1): 522–54. https://doi.org/10.1080/21505594.2017.1313372

48. Mantovani H.C., Russell J.B. Nisin resistance of Streptococcus bovis. Appl Environ Microbiol. 2001; 67(2): 808–13. https://doi.org/10.1128/aem.67.2.808-813.2001

49. Papadimitriou K., Alegría Á., Bron P.A., de Angelis M., Gobbetti M., Kleerebezem M. et al. Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev. 2016; 80(3): 837–90. https://doi.org/10.1128/mmbr.00076-15

50. Dicks L.M.T., Dreyer L., Smith C., van Staden A.D. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut–Blood Barrier? Front Microbiol. 2018; 9: 2297. https://doi.org/10.3389/fmicb.2018.02297

51. Algburi A., Comito N., Kashtanov D., Dicks L.M.T., Chikindas M.L. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Microbiol. 2017; 83(3): e02508–16. https://doi.org/10.1128/aem.02508-16

52. Repka L.M., Chekan J.R., Nair S.K., van der Donk W.A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev. 2017; 117(8): 5457–520. https://doi.org/10.1021/acs.chemrev.6b00591

53. Yang X., Lennard K.R., He C., Walker M.C., Ball A.T., Doigneaux C. et al. A lanthipeptide library used to identify a protein-protein interaction inhibitor. Nat Chem Biol. 2018; 14(4): 375–80. https://doi.org/10.1038/s41589-018-0008-5

54. Report of the Forty Eighth Session of the Codex Committee on Food Additives. Codex Alimentarius Commission; 2018.

55. Field D., Baghou I., Rea M., Gardiner G., Ross R., Hill C. Nisin in combination with cinnamaldehyde and EDTA to control growth of Escherichia coli strains of swine origin. Antibiotics (Basel). 2017; 6(4): 35. https://doi.org/10.3390/antibiotics6040035

56. Field D., Cotter P.D., Ross R.P., Hill C. Bioengineering of the model lantibiotic nisin. Bioengineered. 2015; 6(4): 187–92. https://doi.org/10.1080/21655979.2015.1049781

57. Zhao X., Shi C., Meng R., Liu Z., Huang Y., Zhao Z. et al. Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. J Food Sci Technol. 2016; 53(6): 2644–53. https://doi.org/10.1007/s13197-016-2236-6

58. Nerandzic M.M., Donskey C.J. Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin. PLoS One. 2013; 8(1): e54740. https://doi.org/10.1371/journal.pone.0054740

59. Overbeck T.J., Welker D.L., Hughes J.E., Steele J.L., Broadbent J.R. Transient MutS-based hypermutation system for adaptive evolution of Lactobacillus casei to low pH. Appl Environ Microbiol. 2017; 83(20): e01120–17. https://doi.org/10.1128/aem.01120-17

60. Bang C., Vierbuchen T., Gutsmann T., Heine H., Schmitz R.A. Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides. PLoS One. 2017; 12(10): e0185919. https://doi.org/10.1371/journal.pone.0185919

61. Hatziioanou D., Gherghisan-Filip C., Saalbach G., Horn N., Wegmann U., Duncan S.H. et al. Discovery of a Novel Lantibiotic Nisin O from Blautia-Obeum A2-162, Isolated from the Human Gastrointestinal Tract. Microbiology. 2017; 163(9): 1292–305. https://doi.org/10.1099/mic.0.000515

62. Giardina A., Alduina R., Gallo G., Monciardini P., Sosio M., Puglia A.M. Inorganic phosphate is a trigger factor for Microbispora sp. ATCC-PTA-5024 growth and NAI-107 production. Microb Cell Fact. 2014; 13: 133. https://doi.org/10.1186/s12934-014-0133-0

63. Gravesen A., Kallipolitis B., Holmstrøm K., Høiby P.E., Ramnath M., Knøchel S. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol. 2004; 70(3): 1669–79. https://doi.org/10.1128/aem.70.3.1669-1679.2004

64. Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017; 18(1): 2.https://doi.org/10.1186/s12865-016-0187-3

65. Kindrachuk J., Jenssen H., Elliott M., Nijnik A., Magrangeas-Janot L., Pasupuleti M. et al. Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory. Innate Immun. 2013; 19(3): 315–27. https://doi.org/10.1177/1753425912461456.3389/fmicb.2018.02297

66. Gabrielsen C., Brede D.A., Nes I.F., Diep D.B. Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol. 2014; 80(22): 6854–62. https://doi.org/10.1128/aem.02284-14

67. Perez R.H., Zendo T., Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact. 2014; 13(Suppl. 1): S3. https://doi.org/10.1186/1475-2859-13-s1-s3

68. Kamarajan P., Hayami T., Matte B., Liu Y., Danciu T., Ramamoorthy A. et al. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One. 2015; 10(7): e0131008. https://doi.org/10.1371/journal.pone.0131008

69. Carroll J., Field D., O’Connor P.M., Cotter P.D., Coffey A., Hill C. et al. Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioeng Bugs. 2010; 1(6): 408–12. https://doi.org/10.4161/bbug.1.6.1364


Для цитирования:


Багрянцева О.В., Хотимченко С.А., Петренко А.С., Шевелева С.А., Арнаутов О.В., Елизарова Е.В. Антибиотические свойства низина в контексте его применения в качестве пищевой добавки. Гигиена и санитария. 2020;99(7):704-711. https://doi.org/10.47470/0016-9900-2020-99-7-704-711

For citation:


Bagryantseva O.V., Khotimchenko S.A., Petrenko A.S., Sheveleva S.A., Arnautov O.V., Elizarova E.V. Antibiotic properties of nisin in the context of its use as a food additive. Hygiene and Sanitation. 2020;99(7):704-711. (In Russ.) https://doi.org/10.47470/0016-9900-2020-99-7-704-711

Просмотров: 40


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)