Preview

Гигиена и санитария

Расширенный поиск

Роль биоплёнок в адаптации микроорганизмов к неблагоприятным факторам окружающей среды на примере Pseudomonas aeruginosa (обзор литературы)

https://doi.org/10.47470/0016-9900-2020-99-4-379-383

Аннотация

Pseudomonas aeruginosa - широко представленный вид бактерий, обладающий патогенным потенциалом. Данный инфекционный агент является возбудителем раневых инфекций, фиброзного цистита, фиброзирующей пневмонии, бактериального сепсиса и других патологий. Микроорганизм отличается высокой устойчивостью к антисептикам и дезинфектантам, а также специфическим реакциям иммунной системы организма. Реакции чувства кворума данного вида бактерий обеспечивают включение многих факторов патогенности. Одним из важных особенностей синегнойной палочки является её способность к образованию биоплёнок (в качестве одной из реакций чувства кворума), что считается одним из факторов устойчивости к антибиотикам и антисептикам. Анализ научной литературы позволил сформулировать четыре вопроса, касающихся роли биоплёнок для адаптации P. aeruginosae к неблагоприятным факторам окружающей среды. Является ли источником заражения P. aeruginosa другой человек или преимущественно этиологический агент находится в окружающей среде? Оказывает ли влияние на антибиотикорезистентность образование биоплёнки? Каким образом реализуется антагонистическая активность микроорганизмов в биоплёночной форме? Какова основная функция биоплёнок в функционировании бактерий? Авторами была выдвинута гипотеза о том, что влияние биоплёнки на повышение антибиотикорезистентности бактерий и, в частности, P. aeruginosae, носит вторичный характер. Вызывает сомнение, что биоплёнка сама по себе способна выполнять барьерную функцию, защищающую от антибиотиков, как минимум ввиду несопоставимости молекулярных радиусов большинства антибиотиков и пор в биоплёнке. Однако барьерная функция в отношении антител и иммунокомпетентных клеток не вызывает сомнений. Более вероятно, что биоплёнка выполняет функцию запасания питательных веществ и обеспечения топической конкуренции в условиях дефицита пищевых ресурсов.

Об авторах

Василий Николаевич Афонюшкин
ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»
Россия

Кандидат биол. наук, зав. сектором молекулярной биологии СФНЦА РАН, 630501, Новосибирская область, п. Краснообск.

e-mail: lisocim@mail.ru



Н. А. Донченко
ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»
Россия


Ю. Н. Козлова
ФГБУН «Институт химической биологии и фундаментальной медицины СО РАН»
Россия


Н. В. Давыдова
ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»
Россия


В. Ю. Коптев
ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»
Россия


В. С. Черепушкина
ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»
Россия


Список литературы

1. Peleg A.Y., Hooper D.C. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010; 362 (19): 1804-13. https://doi.org/10.1056/NEJMra0904124

2. Cross A., Allen J.R., Burke J., Ducel G., Harris A., John J. et al. Nosocomial infections due to Pseudomonas aeruginosa: review of recent trends. Rev Infect Dis. 1983; 5 (Suppl 5): 837-45.

3. Gibson R.L., Burns J.L., Ramsey B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003; 168 (8): 918-51.

4. Singh P.K., Schaefer A.L., Parsek M.R., Moninger T.O., Welsh M.J., Greenberg E.P. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000; 407 (6805): 762-4. https://doi.org/10.1038/35037627

5. Литвин В. Сапрофитная фаза в экологии возбудителей инфекционных заболеваний. Журнал микробиологии, эпидемиологии и иммунобиологии. 1985; 1: 98-103.

6. Сомов Г.П., Варвашевич Т.Н., Тимченко Н.Ф. Психрофильность патогенных бактерий. Новосибирск: Наука; 1991. 201 с.

7. Hardalo C., Edberg S.C. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol. 1997; 23 (1): 47-75.

8. Blanc D.S. The use of molecular typing for the epidemiological surveillance and investigation of endemic nosocomial infections. Infect Genet Evol. 2004; (4): 193-7.

9. Grundmann H., Kropec A., Hartung D., Berner R., Daschner F. Pseudomonas aeruginosa in a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen. J Infect Dis. 1993; 168 (4): 943-7.

10. Гостев В.В., Сидоренко С.В. Бактериальные биоплёнки и инфекции. Журнал инфектологии. 2010; 2 (3): 4-15

11. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284: 1318-22.

12. Costerton W., Veeh R., Shirtliff M. et al. The application of biofilm science to the study and control of chronic bacterial infections. Clin Invest. 2003; 112: 1466-77.

13. O’Toolе G.A., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Ann Rev Microbiol. 2000; 54: 49-79.

14. Tetz V.V. The effect of antimicrobial agents and mutagen on bacterial cells in colonies. Med Microbiol Lett. 1996; 5: 426-36.

15. Verraes C., Van Boxstael S., Van Meervenne E., Van Coillie E., Butaye P., Catry B. et al. Antimicrobial Resistance in the Food Chain: A Review. Int J Environ Res Public Health. 2013; 10: 2643-69.

16. Freedman D.J., Kondo J.K., Willrett D.L. Antagonism of Foodborne Bacteria by Pseudomonas spp.: A Possible Role for Iron. J Food Prot. 1989; 52 (7): 484-9.

17. El-Shouny W.A., Al-Baidani A.R.H., Hamza W.T. Antimicrobial Activity of Pyocyanin Produced by Pseudomonas aeruginosa Isolated from Surgical Wound-InfectionsInternational. Journal of Pharmacy and Medical Sciences. 2011; 1 (1): 1-7.

18. Gray K.M., Passador L., Iglewski B.H., Greenberg E.P. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol. 1994; 176 (10): 3076-80.

19. Surette M.G., Miller M.B., Bassler B.L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA. 1999; 96: 1639-44.

20. Wang X.D., de Boer P.A., Rothfield L.I. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J. 1991; 10 (11): 3363-72.

21. Michael B., Smith J.N., Swift S., Heffron F., Ahmer B.M. SdiA of Salmonella enteric is a LuxR homolog that detects mixed microbial communities. J Bacteriol. 2001; 183: 5733-42.

22. Swift S., Lynch M.J., Fish L., Kirke D.F., Tomas J.M., Stewart G.S. et al. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonashydrophila. Infect Immun. 1999; 67: 5192-9.

23. Manefield M., Rasmussen T.B., Henzter M., Andersen J.B., Steinberg P., Kjelleberg S. et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 2002; 148: 1119-27.

24. Smith K.M., Bu Y., Suga H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol. 2003; 10: 81-9.

25. Lin Y.-H., Xu J.-L., Hu J., Wang L.-H., Ong S.L., Leadbetter J.R. et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol. 2003; 47: 849-60.

26. Dong Y.-H., Xu J.-L., Li X.-Z., Zhang L.H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwiniacarotovora. Proc Natl Acad Sci USA. 2000; 97: 3526-31.

27. Hentzer M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003; 22: 3803-15.

28. Hoang T.T., Schweizer H.P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol. 1999; 181: 5489-97.

29. Stephenson K., Yamaguchi Y., Hoch J.A. The mechanism of action of inhibitors of bacterial two component signal transduction systems. J Biol Chem. 2000; 275: 38900-4.

30. Huang J.J., Han J.-I., Zhang L.-H., Leadbetter J.R. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2003; 69 (10): 5941-9.

31. Park S.-Y., Kang H.-O., Jang H.-S., Lee J.-K., Koo B.-T., Yum D.-Y. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces рp. and its application to quorum quenching. Appl Environ Microbiol. 2005; 71: 2632-41.

32. Branda S.S., Vik Å., Friedman L., Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005; 13: 20-6.

33. Murata K., Inose T., Hisano T., Abe S., Yonemoto Y., Yamashita T. et al. Bacterial alginate lyase: enzymology, genetics and application. J Ferment Bioeng. 1993; 76: 427-37.

34. Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinic Microbiol Rev. 2002; 15: 167-93.

35. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003; 2: 114-22.

36. Campanac C., Pineau L., Payard A., Baziard-Mouysset G., Roques C. Interactions between Biocide Cationic Agents and Bacterial Biofilms. Antimicrob Agents Chemother. 2002; 46: 1469-74.

37. Chambless J.D., Hunt S.M., Philip S.S. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol. 2006; 72: 2005-13.

38. Mulcahy H., Charron-Mazenod L., Lewenz S. Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. PLOS Pathog. https://doi.org/10.1371/journal.ppat.1000213.

39. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999; 284: 1318-22.

40. Kumon H., Tomochika K., Matunaga T., Ogawa M., Ohmori H. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol. 1994; 38: 615-9.

41. Hoyle B.D., Alcantara J., Costerton J.W. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother. 1992; 36: 2054-6.

42. Suci P.A., Mittelman M.W., Yu F.P., Geesey G.G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994; 38: 2125-33.

43. Hogan D., Kolter R. Why are bacteria refractory to antimicrobials? Cur Opinion Microbiol. 2002; 5: 472-7.

44. Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol. 2002; 92: 55-64.

45. Cotton L.A., Graham R.J., Lee R.J. The Role of Alginate in P. aeruginosa PAO1 Biofilm Structural Resistance to Gentamicin and Ciprofloxacin. JEMI. 2009; 13: 58-62.

46. Hentzer M., Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest. 2003; 112: 1300-7.

47. Bjarnsholt T., Givskov M. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Phil Trans R Soc B. 2007; 362: 1213-22.

48. Jefferson K.K. What drives bacteria to produce a biofilm? FEMS Microbiol Lett. 2004; 236: 163-73.


Рецензия

Для цитирования:


Афонюшкин В.Н., Донченко Н.А., Козлова Ю.Н., Давыдова Н.В., Коптев В.Ю., Черепушкина В.С. Роль биоплёнок в адаптации микроорганизмов к неблагоприятным факторам окружающей среды на примере Pseudomonas aeruginosa (обзор литературы). Гигиена и санитария. 2020;99(4):379-383. https://doi.org/10.47470/0016-9900-2020-99-4-379-383

For citation:


Afonyushkin V.N., Donchenko N.A., Kozlova J.N., Davidova N.A., Koptev V.Yu., Cherepushkina V.S. Questions on the role of biofilms for the adaptation of microorganisms to unfavorable environmental factors by the example of P. aeruginosa. Hygiene and Sanitation. 2020;99(4):379-383. (In Russ.) https://doi.org/10.47470/0016-9900-2020-99-4-379-383

Просмотров: 536


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)