Preview

Hygiene and Sanitation

Advanced search

Environmental factors and cardiovascular diseases

https://doi.org/10.47470/0016-9900-2021-100-3-223-228

Abstract

Introduction. New advances in the diagnosis and treatment of cardiovascular diseases (CVD), as practice shows, are not able to significantly improve the statistical indicators of morbidity and mortality of CVD. This fact indicates that there are additional factors and mechanisms that are important to consider, both for prevention and for the most optimal management of patients. Recently, the relationship between environmental and lifestyle factors with CVD has been actively studied. However, despite understanding the relationship between environmental factors and various diseases, including CVD, the mechanisms by which specific factors increase or decrease the risk of developing CVD are not yet fully understood, and a number of studies are contradictory.

The aim of our work was to generalize existing data on the impact of such critical environmental factors as air pollution and solar insolation on the cardiovascular system, as well as to comprehensively discuss the mechanisms by which these environmental factors can participate in the development and progression of CVD. To achieve our work’s goal, we analyzed modern foreign literature using the PubMed database.

Conclusion. According to numerous experimental and clinical studies, air pollution and solar insolation deficiency play an essential role in developing CVD and the aggravation of patients with various CVD (atherosclerosis, hypertension, coronary heart disease, heart failure, myocardial infarction, and stroke). Thus, air pollution and lack of solar insolation can be considered as critical risk factors for CVD. Future research should focus on the study and establishment of specific pathogenetic mechanisms by which environmental factors affect the cardiovascular system’s health to develop effective treatment and prevention measures.

About the Authors

Aleksey M. Chaulin
Samara State Medical University; Samara regional clinical cardiology dispensary
Russian Federation

MD, post-graduate student, assistant of the department of the Samara State Medical University, Samara, 443079, Russian Federation; doctor Samara regional clinical cardiology dispensary, Samara, 443070, Russian Federation.

e-mail: alekseymichailovich22976@gmail.com



Dmitry V. Duplyakov
Samara State Medical University; Samara regional clinical cardiology dispensary
Russian Federation


References

1. Yakushin S.S., Filippov E.V. Prevention of cardiovascular diseases is a healthy lifestyle strategy. Vrach. 2011; (9): 2–7. (in Russian)

2. Chaulin A.M., Karslyan L.S., Grigor’eva E.V., Nurbaltaeva D.A., Duplyakov D.V. Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiya. 2019; 59(11): 66–75. https://doi.org/10.18087/cardio.2019.11.n414 (in Russian)

3. Bazdyrev E.D., Barbarash O.L. Ecology and cardiovascular diseases. Ekologiya cheloveka. 2014; (5): 53–9. (in Russian)

4. Arkhipovskiy V.L. Cardiovascular pathology: prevalence, main risk factors. Ekologiya cheloveka. 2007; (7): 20–5. (in Russian)

5. Almetwally A.A., Bin-Jumah M., Allam A.A. Ambient air pollution and its influence on human health and welfare: an overview. Environ. Sci. Pollut. Res. Int. 2020; 27(20): 24815–30. https://doi.org/10.1007/s11356-020-09042-2

6. Hartung T. Toxicology for the twenty-first century. Nature. 2009; 460(7252): 208–12. https://doi.org/10.1038/460208a

7. Wilkening K.E., Barrie L.A., Engle M. Atmospheric science. trans-Pacific air pollution. Science. 2000; 290(5489): 65–7. https://doi.org/10.1126/science.290.5489.65

8. Lelieveld J., Evans J.S., Fnais M., Giannadaki D., Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015; 525(7569): 367–71. https://doi.org/10.1038/nature15371

9. Caiazzo F., Ashok A., Waitz I.A., Yim S.H., Barrett S.R. Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005. Atmos. Environ. 2013; 79: 198–208. https://doi.org/10.1016/j.atmosenv.2013.05.081

10. Cosselman K.E., Navas-Acien A., Kaufman J.D. Environmental factors in cardiovascular disease. Nat. Rev. Cardiol. 2015; 12(11): 627–42. https://doi.org/10.1038/nrcardio.2015.152

11. Bhatnagar A. Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ. Res. 2006; 99(7): 692–705. https://doi.org/10.1161/01.RES.0000243586.99701.cf

12. Gold D.R., Mittleman M.A. New insights into pollution and the cardiovascular system: 2010 to 2012. Circulation. 2013; 127(18): 1903–13. https://doi.org/10.1161/CIRCULATIONAHA.111.064337

13. Puett R.C., Hart J.E., Suh H., Mittleman M., Laden F. Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up stud. Environ. Health Perspect. 2011; 119(8): 1130–5. https://doi.org/10.1289/ehp.1002921

14. Pope C.A. 3rd., Bhatnagar A., McCracken J.P., Abplanalp W., Conklin D.J., O’Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016; 119(11): 1204–14. https://doi.org/10.1161/CIRCRESAHA.116.309279

15. Bauer M., Moebus S., Mohlenkamp S., Dragano N., Nonnemacher M., Fuchsluger M., et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. J. Am. Coll. Cardiol. 2010; 56(22): 1803–8. https://doi.org/10.1016/j.jacc.2010.04.065

16. Hoffmann B., Moebus S., Dragano N., Stang A., Mohlenkamp S., Schmermund A., et al. Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ. Health Perspect. 2009; 117(8): 1302–8. https://doi.org/10.1289/ehp.0800362

17. Kingsley S.L., Eliot M.N., Whitsel E.A., Wang Y., Coull B.A., Hou L., et al. Residential proximity to major roadways and incident hypertension in post-menopausal women. Environ. Res. 2015; 142: 522–8. https://doi.org/10.1016/j.envres.2015.08.002

18. Tonne C., Melly S., Mittleman M., Coull B., Goldberg R., Schwartz J. A case-control analysis of exposure to traffic and acute myocardial infarction. Environ. Health Perspect. 2007; 115(1): 53–7. https://doi.org/10.1289/ehp.9587

19. Wilker E.H., Mostofsky E., Lue S.H., Gold D., Schwartz J., Wellenius G.A., et al. Residential proximity to high-traffic roadways and poststroke mortality. J. Stroke Cerebrovasc. Dis. 2013; 22(8): e366–72. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.03.034

20. Bhatnagar A. Cardiovascular pathophysiology of environmental pollutants. Am. J. Physiol. Heart Circ. Physiol. 2004; 286: H479–85. https://doi.org/10.1152/ajpheart.00817.2003

21. Conklin D.J., Barski O.A., Lesgards J.F., Juvan P., Rezen T., Rozman D., et al. Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicol. Appl. Pharmacol. 2010; 243(1): 1–12. https://doi.org/10.1016/j.taap.2009.12.010

22. Conklin D.J., Haberzettl P., Prough R.A., Bhatnagar A. Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke. Am. J. Physiol. Heart Circ. Physiol. 2009; 296(5): H1586–97. https://doi.org/10.1152/ajpheart.00867.2008

23. Chaulin A.M., Grigor’eva Yu.V., Duplyakov D.V. Comboridity of chronic obstructive pulmonary disease and cardiovascular diseases: general factors, pathophysiological mechanisms and clinical significance. Klinicheskaya praktika. 2020; 11(1): 112–21. https://doi.org/10.17816/clinpract21218 (in Russian)

24. Rao X., Zhong J., Maiseyeu A., Gopalakrishnan B., Villamena F.A., Chen L.C., et al. CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circ. Res. 2014; 115(9): 770–80. https://doi.org/10.1161/CIRCRESAHA.115.304666

25. Haberzettl P., O‘Toole T.E., Bhatnagar A., Conklin D.J. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ. Health Perspect. 2016; 124(12): 1830–9. https://doi.org/10.1289/EHP212

26. Yang L., Lof M., Veierod M.B., Sandin S., Adami H.O., Weiderpass E. Ultraviolet exposure and mortality among women in Sweden. Cancer Epidemiol. Biomarkers Prev. 2011; 20(4): 683–90. https://doi.org/10.1158/1055-9965.EPI-10-0982

27. Lindqvist P.G., Epstein E., Nielsen K., Landin-Olsson M., Ingvar C., Olsson H. Avoidance of sun exposure as a risk factor for major causes of death: a competing risk analysis of the Melanoma in Southern Sweden cohort. J. Intern. Med. 2016; 280(4): 375–87. https://doi.org/10.1111/joim.12496

28. Donneyong M.M., Taylor K.C., Kerber R.A., Hornung C.A., Scragg R. Is outdoor recreational activity an independent predictor of cardiovascular disease mortality – NHANES III? Nutr. Metab. Cardiovasc. Dis. 2016; 26(8): 735–42. https://doi.org/10.1016/j.numecd.2016.02.008

29. Clemens T.L., Adams J.S., Henderson S.L., Holick M.F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982; 1(8263): 74–6. https://doi.org/10.1016/s0140-6736(82)90214-8

30. Alemzadeh R., Kichler J., Babar G., Calhoun M. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism. 2008; 57(2): 183–91. https://doi.org/10.1016/j.metabol.2007.08.023

31. Cheng S., Massaro J.M., Fox C.S., Larson M.G., Keyes M.J., McCabe E.L., et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes. 2010; 59(1): 242–8. https://doi.org/10.2337/db09-1011

32. Rostand S.G. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1997; 30(2 Pt. 1): 150–6. https://doi.org/10.1161/01.hyp.30.2.150

33. Argiles A., Mourad G., Mion C. Seasonal changes in blood pressure in patients with end-stage renal disease treated with hemodialysis. N. Engl. J. Med. 1998; 339(19): 1364–70. https://doi.org/10.1056/NEJM199811053391904

34. Lee J.H., O’Keefe J.H., Bell D., Hensrud D.D., Holick M.F. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J. Am. Coll. Cardiol. 2008; 52(24): 1949–56. https://doi.org/10.1016/j.jacc.2008.08.050

35. Bouillon R., Carmeliet G., Verlinden L., van Etten E., Verstuyf A., Luderer H.F., et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 2008; 29(6): 726–76. https://doi.org/10.1210/er.2008-0004

36. Wang T.J. Vitamin D and Cardiovascular Disease. Annu Rev Med. 2016; 67: 261–272. https://doi.org/10.1146/annurev-med-051214-025146.

37. Pilz S., Verheyen N., Grubler M.R., Tomaschitz A., Marz W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016; 13(7): 404–17. https://doi.org/10.1038/nrcardio.2016.73

38. Rylova N.V., Zholinskiy A.V. Role of vitamin D in prophylaxis of cardiovascular diseases. Prakticheskaya meditsina. 2020; 18(1): 50–3. https://doi.org/10.32000/2072-1757-2020-1-50-53 (in Russian)

39. Kunutsor S.K., Apekey T.A., Steur M. Vitamin D and risk of future hypertension: meta-analysis of 283,537 participants. Eur. J. Epidemiol. 2013; 28(3): 205–21. https://doi.org/10.1007/s10654-013-9790-2

40. Autier P., Gandini S. Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 2007; 167(16): 1730–7. https://doi.org/10.1001/archinte.167.16.1730

41. Bjelakovic G., Gluud L.L., Nikolova D., Whitfield K., Wetterslev J., Simonetti R.G., et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 2014; (1): CD007470. https://doi.org/10.1002/14651858.CD007470.pub3

42. Witte K.K., Byrom R., Gierula J., Paton M.F., Jamil H.A., Lowry J.E., et al. Effects of vitamin D on cardiac function in patients with chronic HF: The VINDICATE Study. J. Am. Coll. Cardiol. 2016; 67(22): 2593–603. https://doi.org/10.1016/j.jacc.2016.03.508

43. Oplander C., Volkmar C.M., Paunel-Gorgulu A., van Faassen E.E., Heiss C., Kelm M., et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circ. Res. 2009; 105(10): 1031–40. https://doi.org/10.1161/CIRCRESAHA.109.207019

44. West M.B., Rokosh G., Obal D., Velayutham M., Xuan Y.T., Hill B.G., et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation. 2008; 118(19): 1970–8. https://doi.org/10.1161/CIRCULATIONAHA.108.791533

45. Sansbury B.E., Cummins T.D., Tang Y., Hellmann J., Holden C.R., Harbeson M.A., et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ. Res. 2012; 111(9): 1176–89. https://doi.org/10.1161/CIRCRESAHA.112.266395

46. Geldenhuys S., Hart P.H., Endersby R., Jacoby P., Feelisch M., Weller R.B., et al. Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes. 2014; 63(11): 3759–69. https://doi.org/10.2337/db13-1675


Review

For citations:


Chaulin A.M., Duplyakov D.V. Environmental factors and cardiovascular diseases. Hygiene and Sanitation. 2021;100(3):223-228. (In Russ.) https://doi.org/10.47470/0016-9900-2021-100-3-223-228

Views: 2811


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)