Preview

Гигиена и санитария

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Влияние загрязнения воздуха твёрдыми взвешенными частицами на развитие болезней системы кровообращения (обзор литературы)

https://doi.org/10.47470/0016-9900-2021-100-6-555-559

Полный текст:

Аннотация

Загрязнение атмосферного воздуха представляет серьёзную угрозу для здоровья людей. Оно признаётся важным фактором риска заболеваемости и смертности, способствуя прежде всего развитию сердечно-сосудистой патологии – артериальной гипертензии, острого инфаркта миокарда, сердечной недостаточности, инсульта. Уменьшение загрязнения воздуха сопровождается снижением частоты сердечно-сосудистых заболеваний (ССЗ). Продолжаются исследования механизмов развития ССЗ под влиянием воздушных загрязнений. Основными биологическими путями являются воспаление и оксидативный стресс, запускающие ряд синергичных патофизиологических реакций. При этом наибольший вред оказывают твёрдые взвешенные в воздухе частицы (particulate matter – РМ), а среди них ультрадисперсные частицы РМ0,1 (менее 0,1 мкм) с наибольшей проникающей способностью. Загрязнение воздуха взвешенными частицами может оказывать негативные эффекты как при длительном, так и при кратковременном воздействии. Пожилые люди, пациенты с ССЗ, хронической обструктивной болезнью лёгких, сахарным диабетом, ожирением более уязвимы при воздействии загрязнителей.

Цель работы – обобщение данных, посвящённых проблеме связи загрязнения воздуха с ССЗ, полученных за последние полтора десятилетия. Проведён поиск литературы в базах данных МеdLine, PubMed, Web of Science, Scopus, Google Scholar.

Результаты исследований воздействия воздушных загрязнений могут различаться из-за разницы в концентрациях, составе загрязнений, длительности их воздействия, структуре исследований, характеристике участников исследований и др. Кроме того, восприимчивость к загрязнению воздуха может варьироваться под влиянием других факторов – экономических, экологических, социальных и др. Характер загрязнения атмосферного воздуха изучали во многих промышленных центрах России, но его воздействию на состояние сердечно-сосудистой системы в стране посвящены лишь единичные исследования. Знание этой проблемы до настоящего времени остаётся недостаточным.

Об авторах

Серафима Вениаминовна Герман
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия

Вед. науч. сотр. лаб. экологии человека и общественного здоровья ФГБУ «ЦСП» ФМБА России, 119121, Москва.

e-mail: SGerman@cspmz.ru; alicevict@gmail.com



И. П. Бобровницкий
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия


А. В. Балакаева
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Россия


Список литературы

1. WHO. World Health Organization – Ambient air pollution: A global assessment of exposure and burden of disease. Available at: https://www.who.int/phe/publications/air-pollution-global-assessment/en/

2. Schraufnagel D.E., Balmes J.R., Cowl C.T., De Matteis S., Jung S.H., Mortimer K., et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 1, 2: the damaging effects of air pollution. Chest. 2019; 155(2): 409–27. https://doi.org/10.1016/j.chest. 2018.10.042

3. Feng J., Cavallero S., Hsiai T., Li R. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic. Biol. Med. 2020; 151: 99–110. https://doi.org/10.1016/j.freeradbiomed.2019.12.044

4. Cohen A.J., Brauer M., Burnett R., Anderson H.R., Frostad J., Estep K., et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389(10082): 1907–18. https://doi.org/10.1016/SO140-6736(17)30505-6

5. Leliefeld J., Klingmüller K., Pozzer A., Pöschl U, Fnais M., Daiber A., et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Hearth J. 2019; 40(20): 1590–6. https://doi.org/10.1093/eurheartj/ehz135

6. OECD. The economic consequences of outdoor air pollution, 2016. Available at: https://www.oecd.org/environment/the-economic-consequences-of-outdoor-air-pollution-9789264257474-en.htm

7. Chen K., Schneider A., Cyrys J., Wolf K., Meisinger Ch., Heier M., et al. Hourly exposure to ultrafine particle metrics and the onset of myocardial infarction in Augsburg, Germany. Environ. Health Perspect. 2020; 128(1): 17003. https://doi.org/10.1289/EHP5478

8. Cesaroni G., Forastiere F., Stafoggia M., Andersen Z.J., Badaloni C., Beelen R., et al. Long-term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ. 2014; 348: f7412. https://doi.org/10.1136/bmj.f7412

9. Kaufman J.D., Adar S.D., Barr R.G., Budoff M., Burke G.L., Curl C.L., et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (multi-ethnic study of atherosclerosis and air pollution): a longitudinal cohort study. Lancet. 2016; 388(10045): 696–704. https://doi.org/10.1016/S0140-6736(16)00378-0

10. Landrigan P.J., Fuller R., Acosta N.J.R., Adeyi O., Arnold R., Basu N.N., et al. The Lancet Comission on pollutionand health. Lancet. 2018; 391(10119): 462–512. https://doi.org/10.1016/S0140-6736(17)32345-0

11. Rajagopalan S., Al-Kindi S.G., Brook R.D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2018; 72(17): 2054–70. https://doi.org/10.1016/j.jacc.201807.099

12. Newman J.D., Thurston G.D., Cromar K., Guo Y., Rockman C.B., Fisher E.A., et al. Particulate air pollution and carotid artery stenosis. J. Am. Coll. Cardiol. 2015; 65(11): 1150–1. https://doi.org/10.1016/j.jacc.2014.12.052

13. Bai Li., Shin S., Burnett R.T., Kwong J.C., Hystad P., von Donkelaar A., et al. Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: a population-based study of 5.1 million Canadian adults living in Ontario. Environ. Int. 2019; 132: 105004. https://doi.org/10.1016/j.envint.2019.105004

14. Pinault L., Tjepkema M., Crouse D.L., Weichenthal S., van Donkelaar A, Martin R.V., et al. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ. Health. 2016; 15: 18. https://doi.org/10.1186/s12940-016-0111-6

15. Yin P., He G., Maoyong F., Chiu K.Y., Liu Ch., Liu T., et al. Particular air pollution and mortality in 38 of China s largest cities: time series analysis. BMJ. 2017; 356: j667. https://doi.org/10.1136/bmj.j667

16. Wang M., Hou Z.H., Xu H., Liu Y., Budoff M.J., Szpiro A.A., et al. Association of estimated long-term air pollution and traffic proximity with a marker for coronary atherosclerosis in a nationwide study in China. JAMA Netw. Open. 2019; 2(6): e196553. https://doi.org/10.1001/jamanetworkopen.2019.6553

17. Wu R., Song X., Chen D., Zhong L., Huang X., Bai Y., et al. Health benefit of quality improvement in Guangzhou. China: results from a long time-series analysis (2006–2016). Environ. Int. 2019; 126: 552–9. https://doi.org/10.1016/j.envint.2019.02.064

18. Mannucci Y.T., Kashima S., Doi H. Fine-particulate air pollution from diesel emission control and mortality rates in Tokyo: a quasi-experimental study. Epidemiology. 2016; 27(6): 769–78. https://doi.org/10.1097/EDE.0000000000000546

19. Zhao B., Johnston F.H., Salimi F., Kurabayashi M., Negishi K. Short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: a nationwide case-crossover study in Japan. Lancet Planet. Health. 2020; 4(1): e15-e23. https://doi.org/10.1016/S2542-5196(19)30262-1

20. Romieu I., Gouveia N., Cifuentes L.A., de Leon A.P., Junger W., Vera J., et al. HEI Health Review Committee Multicity study of air pollution and mortality in Latin America (the ESCALA study). Res. Rep. Health Eff. Inst. 2012; (171): 5–86.

21. Atkinson R.W., Kang S., Anderson H.R., Mills I.C., Walton H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax. 2014; 69(7): 660–5. https://doi.org/10.1136/thoraxjnl-2013-204492

22. Cicoira M. Ambient air pollution as a new risk factor for cardiovascular diseases: time to take action. Eur. J. Prevent. Cardiol. 2018; 25(8): 816–7. https://doi.org/10.1177/2047487318770827

23. European Commission Air Quality Standarts. Available at: https://ec.europ.eu/environment/air/quality/standarts.htm

24. Санитарные правила и нормы СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» [электронный ресурс]. Доступен по ссылке: https://docs.cntd.ru/document/573500115 (дата обращения 21.03.2021)

25. United States Environmental Protection Agency. National Ambient Air Quality Standards for Particulate Matter. Washington; 2013. Available at: https://www.govinfo.gov/content/pkg/FR-2013-01-15/pdf/2012-30946.pdf

26. Leliefeld J., Klingmüller K., Pozzer A., Pöschl U., Fnais M., Daiber A., et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Hearth J. 2019; 40(20): 1590–6. https://doi.org/10.1093/eurheartj/ehz135

27. Shi L., Zanobetti A., Kloog I., Coull B.A., Koutrakis P., Melly S.J., et al. Low-concentration PM2,5 and mortality: estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 2016; 124(1): 46–52. https://doi.org/10.1289/ehp1409111

28. Wei Y., Wang Y., Di Q., Choirat C., Wang Y., Koutrakis P., Zanobetti A., et al. Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study. BMJ. 2019; 367: 16258. https://doi.org/10.1136/bmj16258

29. Kodavanti U.P., Thomas R.F., Ledbetter A.D., Schladweiler M.C., Bass V., Kranzt Q.T., et al. Diesel exhaust induced pulmonary and cardiovascular impairment: the role of hypertension intervention. Toxicol. Appl. Pharmacol. 2013; 268(2): 232–40. https://doi.org/10.1016/j.taap.2013.02.002

30. Finch J., Conklin D.J. Air pollution-induced vascular dysfunction: potential role of endothelin-1 (ET-1) system. Cardiovasc. Toxicol. 2016; 16(3): 260–75. https://doi.org/10.1007 / s12012-015-9334-y

31. Dai J., Sun C., Yao Z., Chen W., Yu L., Long M. Exposure to concentrated ambient fine particulate matter disrupts vascular endothelial cell barrier function via the IL-6/HIF-1alpha signaling pathway. FEBS Open Bio. 2016; 6(7): 720–8. https://doi.org/10.1002/2211-5463.12077

32. Wang T., Shimizu Y., Wu X., Kelly G.T., Xu X., Wang L., et al. Particulate matter disrupts human lung endothelial cell barrier integrity via Rho-dependent pathways. Pulm. Circ. 2017; 7(3): 617–23. https://doi.org/10.1086/689906

33. Karki P., Meliton A., Shah A., Tian Y., Ohmura T., Sarich N., et al. Role of truncated oxidized phospholipids in acute endothelial barrier dysfunction caused by particulate matter. PLoS One. 2018; 13(11): e0206251. https://doi.org/10.1371/journal.pone.0206251

34. Fan J., Qin X., Xue X., Han B., Bai Z., Tang N., et al. Effects of carbon components of fine particulate matter (PM2.5) on atherogenic index of plasma. Zhounoghua Yu Fang Yi Xue Za Zhi. 2014; 48(1): 33–7. (in Chinese)

35. Adar S.D., Sheppard L., Vedal S., Polak J.F., Sampson P.D. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 2013; 10(4): e1001430. https://doi.org/10.1371/journal.pmed.1001430

36. Gan W.Q., Allen R.W., Brauer M., Davies H.W., Mancini G.B., Lear S.A. Long-term exposure to traffic-related air pollution and progression of carotid artery atherosclerosis: a prospective cohort study. BMJ Open. 2014; 4(4): e004743. https://doi.org/10.1136/bmjopen-2013-004743

37. Provost E.B., Madhloum N., De Boever P., Nawrot T.S. Carotid intima-media thickness, a marker of subclinical atherosclerosis and particulate air pollution exposure: the meta-analytical evidence. PLoS One. 2015; 10(5): e0127014. https://doi.org/10.1371/journal.pone.0127014

38. Newby D.E., Mannucci P.M., Tell G.S., Baccarelli A.A., Brook R.D., Donaldson K., et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 2015; 36(2): 83–93b. https://doi.org/10/1093/eurheartj/ehu458

39. Perez L., Wolf K., Hennig F., Penell J., Basagana X., Foraster M., et al. Air pollution and atherosclerosis: a cross-sectional analysis of four European cohort studies in the ESCAPE study. Environ. Health Perspect. 2015; 123(6): 597–605. https://doi.org/10.1289/ehp.1307711

40. Yang S., Lee S.P., Park J.B., Lee H., Kang S.H., Lee S.E., et al. PM2,5 concentration in the ambient air is a risk factor for the development of high-risk coronary plaques. Europ. Heart J. Cardoovasc. Imaging. 2019; 20(12): 1355–64. https://doi.org/10.1093/ehjci/jez209

41. Tabakaev M.V., Artamonova G.V. Influence of atmospheric air pollution by suspended substances on the prevalence of cardiovascular diseases among the urban population. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2014; 69(3-4): 55–60. https://doi.org/10.15690/vramn.v69i3-4.996 (in Russian)

42. Liang R., Zhang B., Zhao X., Ruan Y., Lian H., Fan Z. Effect of exposure to PM2,5 on blood pressure: a systematic review and meta-analysis. J. Hypertens. 2014; 32(11): 2130–41. https://doi.org/10.1097/HJH.0000000000000342.

43. Cai Y., Zhang B., Ke W., Feng B., Lin H., Xiao J., et al. Association of short-term and long-term exposure to ambient air pollution with hypertension: a systematic review and meta-analysis. Hypertension. 2016; 68(1): 62–70. https://doi.org/10.1161/HYPERTENSIONAHA.116.07218

44. Yang B.Y., Qian Z., Howard S.W., Vaughn M.G., Fan S.J., Liu K.K., et al. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018; 235: 576–88. https://doi.org/10.1016/j.envpol.2018.01.001

45. Artamonova G.V., Maksimov S.A., Tabakaev M.V., Shapovalova E.B. Health losses from myocardial infarction caused by anthropogenic pollution of the industrial center’s atmosphere. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2015; 94(3): 30–4. (in Russian)

46. Giorgini P., Di Giosia P., Grassi D., Rubenfire M., Brook R.D., Ferri C., et al. Air pollution exposure and blood pressure: an updated review of the literature. Curr. Pharm. Des. 2016; 22(1): 28–51. https://doi.org/10.2174/1381612822666151109111712

47. Pitchika A., Hampel R., Wolf K., Kraus U., Cyrys J., Babisch W., et al. Long-term association of modeled and self-reported measures of exposure to air pollution and noise at residence on prevalent hypertension and blood pressure. Sci. Total Environ. 2017; 593–594: 337–46. https://doi.org/10.1016/j.scitotenv.2017.07.193

48. Arku R.E., Brauer M., Ahmed S.H., AlHabib K.F., Avezum A., Bo J., et al. Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study. Environ. Pollut. 2020; 262: 114197. https://doi.org/10.1016/j.envpol.2020.114197

49. Mustafic H., Jabre P., Caussin C., Murad M.H., Escolano S., Tafflet M., et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA. 2012; 307(7): 713–21. https://doi.org/10.1001/jama.2012.126

50. Pope C.A., Muhlestein J.L., Anderson J.L., Cannon J.B., Hales N.M., Meredith K.G., et al. Short-term exposure to fine particulate matter air pollution is preferentially associated with the risk of ST-segment elevation acute coronary events. J. Am. Heart Assoc. 2015; 4(12): e002506. https://doi.org/10.1161/JAHA.115.002506

51. De Marchis P., Verso M.G., Tramuto F., Amodio E., Piocciotto D. Ischemic cardiovascular disease in workers occupationally exposed to urban air pollution-A systematic review. Ann. Agric. Environ. Med. 2018; 25(1): 162–6. https://doi.org/10.26444/aaem/79922

52. Davoodabadi Z., Soleimani A., Sarrafzadegan N. Correlation between air pollution and hospitalization due to myocardial infarction. ARYA Atheroscler. 2019; 15(4): 161–7. https://doi.org/10.22122/arya.v15i4.1834

53. Butland B.K., Atkinson R.W., Milojevic A., Heal M.R., Doherty R.M., Armstrong B.G., et al. Myocardial infarction, ST-elevation and non ST-elevation myocardial infarction and modelled daily pollution concentration: a case-crossover analysis of MINAP data. Open Heart. 2016; 3(2): e000429. https://doi.org/10.1136/openhrt-2016-000429

54. Liu H., Tian Y., Cao Y., Song J., Huang C., Xiang X., et al Fine particulate air pollution and hospital admission and readmission for acuter myocardial infarction in 26 Chinese cities. Chemosphere. 2018; 192: 282–8. https://doi.org/10.1016/j.chemosphere.2017.10.123

55. Zanobetti A., Coull B.A., Gryparis A., Kloog I., Sparrow D., Vokonas P.S., et al. Association between arrhythmia episodes and temporally and spatially resolved black carbon and particulate matter in elderly patients. Occup. Environ. Med. 2014; 71(3): 201–7. https://doi.org/10.1136/oemed-2013-101526

56. Link M.S., Luttmann-Gibson H., Schwartz J., Mittleman M.A., Wessler B., Gold D.R., et al. Acute exposure to air pollution triggers atrial fibrillation. J. Am. Coll. Cardiol. 2013; 62(9): 816–25. https://doi.org/10.1016/j.jace.2013.05.043

57. Saifipour A., Azhari A., Pourmoghaddas A., Hosseini S.M., Jafari-Koshki T., Rahimi M., et al. Association between ambient air pollution and hospitalization caused by atrial fibrillation. ARYA Atheroscler. 2019; 15(3): 106–12. https://doi.org/10.22122/arya.v15i3.1843

58. Shah A.S., Langrish J.P., Nair H., McAllister D.A., Hunter A.L., Donaldson K., et al. Global association of air pollution and heart failure: a systemic review and meta-analysis. Lancet. 2013; 382(9897): 1039–48. https://doi.org/10.1016/S0140-6736(13)60898-3

59. Zhang L.M., Chen X., Xue X.D., Sun M., Han B., Li C.P., et al. Long-term exposure to high particulate matter pollution and cardiovascular mortality: a 12-year cohort study in four cities in northern China. Environ. Int. 2014; 62: 41–7. https://doi.org/10.1016/j.envint.2013.09.012

60. Teng T.H.K., Williams T.A., Bremner A., Tohira H., Franklin P., Tonkin A., et al. A systematic review of air pollution and incidence of out-of-hospital cardiac arrest. J. Epidemiol. Comm. Health. 2014; 68(1): 37–43. https://doi.org/10.1136/jech-2013-203116

61. Franchini M., Guida A., Tufano A., Coppolo A. Air pollution, vascular disease and thrombosis: linking clinical data and pathogenic mechanisms. J. Thromb. Haemost. 2012; 10(12): 2438–51.

62. Ward-Caviness C.K. A review of gene-by-air pollution interactions for cardiovascular disease, risk factors, and biomarkers. Human Genetics. 2019; 138(6): 547–61. https://doi.org/10.1007/s00439-019-02004-w


Для цитирования:


Герман С.В., Бобровницкий И.П., Балакаева А.В. Влияние загрязнения воздуха твёрдыми взвешенными частицами на развитие болезней системы кровообращения (обзор литературы). Гигиена и санитария. 2021;100(6):555-559. https://doi.org/10.47470/0016-9900-2021-100-6-555-559

For citation:


German S.V., Bobrovnitskii I.P., Balakaeva A.V. The impact of air pollution with the particulate matter on the development of cardiovascular diseases (literature review). Hygiene and Sanitation. 2021;100(6):555-559. (In Russ.) https://doi.org/10.47470/0016-9900-2021-100-6-555-559

Просмотров: 30


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)