Balance of glutathione-related processes in alveolar macrophages under exposure to suspended particulate matter of atmospheric air in of Wistar rats
https://doi.org/10.47470/0016-9900-2020-99-2-200-205
Abstract
Introduction. Air suspended particulate matter (SPM) directly influence on the human respiratory system. Dispersion is one of the characteristics of SPM determining their pathogenicity. Alveolar macrophages (AMs) produce reactive oxygen species in response to an exposure that may lead to oxidative stress.
The aim of the study. To assess the contribution of the glutathione antioxidant system to the protection of AMs from oxidative stress induced by air SPMs in Vladivostok’s districts with various man-made loads.
Material and methods. AMs were isolated from bronchoalveolar lavage of 17 Wistar rats. AMs were exposed by model suspensions (MS) for 2 days. MSs were identical air composition of Vladivostok’s districts with insignificant (MS № 1) and high (MS № 2) technogenic load. MS № 1 contained 22% of particles with a diameter of less than 10 µm. MS № 2 contained 70% of particles with a diameter smaller than 10 μm. The levels of malondialdehyde, glutathione and total antioxidant activity in cell culture and culture fluid were determined.
Results. The gain in the proportion of fine and ultrafine particles in MS № 2 has been established to lead to an increase in lipid peroxidation in AMs and a compensatory elevation in the antioxidant activity. The elevation of oxidized glutathione concentration in cell culture indicates the intensification of hydroperoxide detoxification by AMs. The reduction of reduced glutathione exocytosis supports intracellular antioxidant processes.
Conclusion. An increase in the fraction of fine and ultrafine particles in the air appears to shift AM redox balance towards oxidative stress, contributing to the formation and the progression of pathological disorders.
About the Authors
T. I. VitkinaRussian Federation
Lyudmila S. Barskova
Russian Federation
MD, postgraduate student, Junior Researcher of the Laboratory of Medical Ecology and Recreational Resources of the Vladivostok branch of the Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, 690105, Russian Federation.
e-mail: pretty_people_2016@mail.ru
N. E. Zyumchenko
Russian Federation
N. P. Tokmakova
Russian Federation
T. A. Gvozdenko
Russian Federation
K. S. Golokhvast
Russian Federation
References
1. Rakhmanin Yu.A. The decision of the Plenum of the Scientific Council of the Russian Federation for Human Ecology and Environmental Health. Gigiena i sanitariya [Hygiene and Sanitation, Russian journal]. 2016; 95 (8): 790–2. (in Russian)
2. Ambient (outdoor) air quality and health - World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed 5 February 2019)
3. Atkinson R.W., Kang S., Anderson H.R., Mills I.C., Walton H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax. 2014; 69: 660-5.
4. Veremchuk L.V., Yankova V.I., Vitkina T.I., Barskova L.S., Golokhvast K.S. The development of air pollution in city Vladivostok and its impact on respiratory morbidity. Sibirskiy nauchnyy meditsinskiy zhurnal [The Siberian Scientific Medical Journal]. 2015; 35 (4): 55–61. (in Russian)
5. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388 (10053): 1659-724. https://doi.org/10.1016/S0140-6736(16)31679-8
6. Gehring U., Gruzieva O., Agius R.M. et al. Air pollution exposure and lung function in children: the ESCAPE project. Environ Health Perspect. 2013; 121 (11-12): 1357-64.
7. Gordon S.B., Bruce N.G., Grigg J., Hibberd P.L., Kurmi O.P., Lam K.B. et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Res Med. 2014; 2 (10): 823-60. https://doi.org/10.1016/S2213-2600(14)70168-7
8. Rodriguez-Villamizar L.A., Magico A., Osornio-Vargas A., Rowe B.H. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies. Can Respir J. 2015; 22 (5): 282-92.
9. Veremchuk L.V., Mineeva E.E., Vitkina T.I., Gvozdenko T.A., Golokhvast K.S. Impact of atmospheric microparticles and heavy metals on external respiration function of urbanized territory population. ROMJ. 2017; 6 (4). https://doi.org/10.15275/rusomj.2017.0402 http://www.romj.org/2017-0402
10. Delfino R.J., Wu J., Tjoa T., Gullesserian S.K., Nickerson B., Gillen D.L. Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution. Epidemiology. 2014; 25: 48-57.
11. Hamra G.B., Guha N., Cohen A., Laden F., Raaschou-Nielsen O., Samet J.M. et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014; 122: 906-11. https://doi.org/10.1289/ehp.1408092
12. Raaschou-Nielsen O., Beelenc R., Wang M. et al. Particulate matter air pollution components and risk for lung cancer. Environ Int. 2016; 87: 66-73. https://doi.org/10.1016/j.envint.2015.11.007
13. Lee B.J., Kim B., Lee K. Air pollution exposure and cardiovascular disease. Toxicol Res. 2014; 30 (2): 71-5. https://doi.org/10.5487/TR.2014.30.2.071
14. Kim K.H., Kabir E., Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015; 74: 136-43. https://doi.org/10.1016/j.envint.2014.10.005
15. Costa L.G., Cole T.B., Coburn J., Chang Y.C., Dao K., Roque P.J. Neurotoxicity of traffic-related air pollution. Neurotoxicology. 2017; 59: 133-9. https://doi.org/10.1016/j.neuro.2015.11.008
16. Noël A., Xiao R., Perveen Z., Zaman H.M., Rouse R.L., Paulsen D.B. et al. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol. 2016; 13: 10. https://doi.org/10.1186/s12989-016-0122-z
17. Pinault L. et al. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ Health. 2016; 15: 18. https://doi.org/10.1186/s12940-016-0111-6
18. Golokhvast K.S., Vitkina T.I., Gvozdenko T.A., Kolosov V.P., Yankova V.I., Kondratieva E.V. et al. Impact of atmospheric microparticles on the development of oxidative stress in healthy city/industrial seaport residents. Oxid Med Cell Longev. 2015: 412173. https://doi.org/10.1155/2015/412173
19. Samoli E., Stafoggia M., Rodopoulou S., Ostro B., Declercq C., Alessandrini E. et al. Associations between fine and coarse particles and mortality in Mediterranean cities: results from the MED-PARTICLES project. Environ Health Perspect. 2013; 121 (8): 932-8. https://doi.org/10.1289/ehp.1206124
20. Simoni M., Baldacci S., Maio S., Cerrai S., Sarno G., Viegi G. Adverse effects of outdoor pollution in the elderly. J Thorac Dis. 2015; 7 (1): 34-45. https://doi.org/10.3978/j.issn.2072-1439.2014.12.10
21. Du Y., Xu X., Chu M., Guo Y., Wang J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J Thorac Dis. 2015; 8: 8-19. https://doi.org/10.3978/j.issn.2072-1439.2015.11.37
22. Barskova L.S., Vitkina T.I., Yankova V.I. The features of the response of alveolar macrophages to the effect of microsized suspended particulate matter of atmospheric air. Zdorov’ye. Meditsinskaya ekologiya. Nauka. 2017; 71 (4): 15–23. http://doi.org/10.5281/zenodo.835303 (in Russian)
23. Jean-Jacques S., Simon D., Ferdinand S., Michael R. Oxidative Potential of Particles in Different Occupational Environments: A Pilot Study. Ann Occup Hyg. 2015; 59 (7): 882-94. https://doi.org/10.1093/annhyg/mev024
24. Оvrevik J., Refsnes M., Låg M., Holme J.A., Schwarze P.E. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules. 2015; 5 (3): 1399-440. https://doi.org/10.3390/biom5031399
25. Hamad S.H., Schauer J.J., Antkiewicz D.S., Shafer M.M., Kadhim A.K. ROS production and gene expression in alveolar macrophages exposed to PM2.5 from Baghdad, Iraq: Seasonal trends and impact of chemical composition. Sci Total Environ. 2016; 543: 739-45. https://doi.org/10.1016/j.scitotenv.2015.11.065
26. Ye Z.-W., Zhang J., Townsend D.M., Tew K.D. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta. 2015; 1850 (8): 1607-21. https://doi.org/10.1016/j.bbagen.2014.11.010
27. Liang C.S., Duan F.K., He K.B., Ma Y.L Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ Int. 2016; 86: 150-70. https://doi.org/10.1016/j.envint.2015.10.016
28. Barskova L.S., Vitkina T.I. Features of air pollution by micro-sized particulate matter in Vladivostok. In: Proceedings of XX International Scientific and Practical Conference “Cities of Russia: problems of construction, engineering, landscaping and ecology”[Sbornik statey XX Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Goroda Rossii: problemy stroitel’stva, inzhenernogo obespecheniya, blagoustroystva i ekologii”]. Penza; 2018: 10–3. (in Russian)
29. Барскова Л.С., Виткина Т.И. Особенности загрязнения воздушной среды г. Владивостока микроразмерными частицами. В кн.: Сборник статей XX Международной научно-практической конференции «Города России: проблемы строительства, инженерного обеспечения, благоустройства и экологии». Пенза; 2018: 10-3
30. Cachon B.F., Firmin S., Verdin A., Ayi-Fanou L., Billet S., Cazier F., Martin P.J., Aissi F., Courcot D., Sanni A., Shirali P. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM(2.5) and PM(>2.5)) collected from Cotonou, Benin. Environ Pollut. 2014; 185: 340-51. https://doi.org/10.1016/j.envpol.2013.10.026
31. Bodlet A., Maury G., Jamart J., Dahlqvist C. Influence of radiological emphysema on lung function test in idiopathic pulmonary fibrosis. Respir Med. 2013; 107: 1781-8. https://doi.org/10.1016/j.rmed.2013.08.039
32. Yankova V.I., Vitkina T.I., Zyumchenko N.E., Barskova L.S., Golokhvast K.S. The impact of model suspensions of micro-sized suspended particulate matter of atmospheric air on morphological and functional characteristics and parameters of lipid peroxidation of alveolar macrophages of vistar’s line rats. Zdorov’ye. Meditsinskaya ekologiya. Nauka. 2017; 71 (4): 80–6. https://doi.org/10.528/zenodo.835330
33. Aztatzi-Aguilar O.G., Valdés-Arzate A., Debray-García Y., Calderón-Aranda E.S., Uribe-Ramirez M., Acosta-Saavedra L. et al. Exposure to ambient particulate matter induces oxidative stress in lung and aorta in a size- and time-dependent manner in rats. Toxicology Research and Application. 2018; 2: 1-15. https://doi.org/10.1177/2397847318794859
Review
For citations:
Vitkina T.I., Barskova L.S., Zyumchenko N.E., Tokmakova N.P., Gvozdenko T.A., Golokhvast K.S. Balance of glutathione-related processes in alveolar macrophages under exposure to suspended particulate matter of atmospheric air in of Wistar rats. Hygiene and Sanitation. 2020;99(2):200-205. (In Russ.) https://doi.org/10.47470/0016-9900-2020-99-2-200-205