Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Methods for measuring mass concentrations of xylene isomers in ambient air (literature review)

https://doi.org/10.47470/0016-9900-2025-104-9-1216-1222

EDN: mmpluq

Abstract

Ambient air is the most important life-support component of the ecosystem, so its pollution is a powerful and permanent factor influencing on both humans and the environment. Volatile organic aromatic compounds are the main group of pollutants that affect human health. For effective analytical control of the environmental quality, highly sensitive and selective methods for determining xylenes in ambient air are necessary.

The aim of this study. To examine the results of theoretical and experimental research, methods and procedures for measuring mass concentrations of xylene isomers in ambient air.

The review focuses on data available in scientific literature published in the abstract databases of Web of Science, Pubmed, Scopus, and Elibrary, devoted to studying the content of xylenes in ambient air.

A review of Russian and foreign scientific literature on physicochemical methods for controlling determination of xylenes in air has revealed organic compounds to be determined using chromato-mass-spectrometry with thermal desorption involved in the sampling stage.

Conclusion. This analysis of scientific and methodological literature has shown sorption concentration on solid sorbents (porous polymer sorbents) to be the most widely used sampling method to determine the content of xylenes in ambient air. The optimal way to extract xylenes from a sorbent is thermal desorption of the selected sample directly into the column of gas chromatograph and subsequent gas chromatographic analysis.

Contribution:
Nurislamova T.V. — study concept and design, editing the text;
Popova N.A. — study concept and design, editing the text;
Maltseva O.A. — study concept and design, editing the text;
Kolmogortseva D.Yu. — literature data collection and analysis, writing the text.
All authors are responsible for the integrity of all parts of the manuscript and approval of its final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. The study had no sponsorship.

Received: June 10, 2025 / Revised: August 8, 2025 / Accepted: September 25, 2025 / Published: October 20, 2025

About the Authors

Tatyana V. Nurislamova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

DSc (Biology), head, Department of chemical and analytical research methods, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: nurtat@fcrisk.ru 



Nina A. Popova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

Senior researcher, Laboratory of gas chromatography methods, Department of Chemical and Analytical Research Methods, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: popova@fcrisk.ru 



Olga A. Maltseva
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

PhD (Biology), researcher, Laboratory of gas chromatography methods, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: malceva@fcrisk.ru



Daria Yu. Kolmogortseva
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation

Junior researcher, Laboratory of Gas Chromatography Methods, Department of Chemical and Analytical Research Methods, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: subbotina@fcrisk.ru



References

1. Magdeeva A.R., Shagidullin A.R., Gilyazova A.F., Amiryanova G.F., Shagidullin R.R. The analysis of the pollutant emission structure from motor transport on the territory of Kazan. Ekologicheskaya bezopasnost’. 2016; (1): 33–7. https://elibrary.ru/wxdhxl (in Russian)

2. Nushervoni B.Kh., Babaev A.B. The influence of working conditions of passenger vehicle drivers on their health status. In: Science and Innovations – Modern Concepts: Collection of Scientific Articles on the Results of the International Scientific Forum. Volume 1 [Nauka i innovatsii – sovremennye kontseptsii. Sbornik nauchnykh statei po itogam raboty Mezhdunarodnogo nauchnogo foruma. Tom 1]. Ufa; 2020: 92–7. https://elibrary.ru/sxjubc (in Russian)

3. Saraev S.D., Chukhlatyi M.S. Environmental problems of the oil and gas industry in Russia. In: The Arctic: Modern Approaches to Industrial and Environmental Safety in the Oil and Gas Sector: Proceedings of the International Scientific-Practical Conference. Volume 2 [Arktika: sovremennye podkhody k proizvodstvennoi i ekologicheskoi bezopasnosti v neftegazovom sektore. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Tom 2]. Tyumen‘; 2023: 132–5. https://elibrary.ru/stbjhi (in Russian)

4. Lapteva N.A. The problem of atmospheric air pollution by volatile aromatic hydrocarbons. In: Modern Trends in the Development of Chemical Technology, Industrial Ecology, and Environmental Safety: Proceedings of the V All-Russian Scientific-Practical Conference Dedicated to the 190th Anniversary of D.I. Mendeleev [Sovremennye tendentsii razvitiya khimicheskoi tekhnologii, promyshlennoi ekologii i ekologicheskoi bezopasnosti. Materialy V Vserossiiskoi nauchno-prakticheskoi konferentsii, posvyashchennoi 190-letiyu D.I. Mendeleeva]. St. Petersburg; 2024: 30–1. https://elibrary.ru/ohndpz (in Russian)

5. Malysheva A.G., Kalinina N.V., Yudin S.M. Chemical air pollution in residential premises as a health risk factor. Health Risk Analysis. 2022; (3): 72–82. https://doi.org/10.21668/health.risk/2022.3.06.eng https://elibrary.ru/kefuwa

6. Kurilkin A.A., Chernov N.S. Anthropogenic volatile organic compounds, their hazards and capture methods. In: Topical Issues of Modern Science: Theory, Methodology, Practice, Innovatics: Collection of Scientific Articles Based on the Materials of the XII International Scientific-Practical Conference. Volume 1 [Aktual’nye voprosy sovremennoi nauki: teoriya, metodologiya, praktika, innovatika. Sbornik nauchnykh statei po materialam XII Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Tom 1]. Ufa; 2023: 24–35. https://elibrary.ru/hmjygx (in Russian)

7. Zaitseva N.V., Zemlianova M.A., Koldibekova Yu.V., Peskova E.V. Development of neurotoxic effects of neurotrophic chemicals. Ekologiya cheloveka. 2020; (3): 48–50. https://doi.org/10.33396/1728-0869-2020-3-47-53 https://elibrary.ru/kvdecg (in Russian)

8. Brakk D.G. Ensuring environmental safety concerning the impact of plastic waste disposal on public health and the environment. Ekonomicheskaya bezopasnost’. 2022; 5(2): 673–5. https://doi.org/10.18334/ecsec.5.2.114416 https://elibrary.ru/viyysr (in Russian)

9. Panasyugin A.S., Kulinich I.L., Masherova N.P., Tsyganov A.R., Kurilo I.I., Pavlovskiy N.D. The usage of organic solvents in paint systems used in high-quality processing of car bodies in the period from 1998 to 2020. Lit‘e i metallurgiya. 2022; (1): 96–105. https://doi.org/10.21122/1683-6065-2022-1-96-105 https://elibrary.ru/unazol (in Russian)

10. Al Basisi M.N.M., Lipaev S.A. Emissions from the refining industry: their sources and methods of their refining. Upravlenie tekhnosferoi. 2020; 3(4): 471–83. https://elibrary.ru/tmmsec (in Russian)

11. Kurolap S.A., Klepikov O.V., Kulnev V.V., Kizeev A.N., Syurin S.A., Enin A.V. Carcinogenic risk associated with atmospheric air pollution in industrial cities of the central Chernozem region. Otsenka riskov dlya zdorov’ya. 2023; 102(8): 854–5. https://doi.org/10.47470/0016-9900-2023-102-8-853-860 https://elibrary.ru/eweumj (in Russian)

12. Lepikhina E.Yu., Bikbulatova E.I. Analysis of the activity of an asphalt concrete plant as a source of environmental pollution. In: Mavlyutov Readings: Proceedings of the XVI All-Russian Youth Scientific Conference. Volume 4 [Mavlyutovskie chteniya. Materialy XVI Vserossiiskoi molodezhnoi nauchnoi konferentsii. Tom 4]. Ufa; 2022: 192–3. https://elibrary.ru/wuzdik (in Russian)

13. Volodina Ya.A. Improvement of control means for volatile organic compounds in ambient air: Diss. St. Petersburg; 2023. (in Russian)

14. Kuzmin S.V., Fedorova N.E., Dobreva N.I., Gordiyuk A.V. Determination of volatile organic compounds: allowable storage times for sorption tubes after sampling. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(8): 976–84. https://doi.org/10.47470/0016-9900-2022-101-8-976-984 https://elibrary.ru/dvxfkf (in Russian)

15. Lar’kina M.V. Air sampling: a comparative evaluation of absorbent materials. In: Chemistry of the XXI Century: Abstracts of the II All-Russian Conference on Fundamental and Applied Chemistry [Khimiya XXI veka. Sbornik tezisov II Vserossiiskoi konferentsii po fundamental’noi i prikladnoi khimii]. Izhevsk; 2024: 66–7. https://elibrary.ru/mcgoyn (in Russian)

16. Rodinkov O.V., Vagner E.A., Bugaichenko A.S., Moskvin L.N. Comparison of the efficiencies of carbon sorbents for the preconcentration of highly volatile organic substances from wet gas atmospheres for the subsequent gas-chromatographic determination. Journal of Analytical Chemistry. 2019; 74(9): 877–82. https://doi.org/10.1134/S1061934819090089 https://elibrary.ru/qlolzf

17. Karapetyan K.G., Dorosh I.V., Korshunov A.D. Review of inorganic sorbents for oil spill response. Yuzhno-Sibirskii nauchnyi vestnik. 2023; (4): 77–88. https://elibrary.ru/uevmwj (in Russian)

18. Teimoori S., Hassani A.H., Panahi M., Mansouri N. Review: methods for removal and adsorption of volatile organic compound from environment matrixes. Anal. Methods Environ. Chem. J. 2020; 3(2): 34–58. https://doi.org/10.24200/amecj.v3.i02.100 https://elibrary.ru/nluwof

19. Kurmanbayeva T., Bukenov B., Rymzhanova Z., Kazhkenova N., Imangabassov A., Smail A., et al. Simple and Accurate on-site Quantition of BTEX in Atmosphereic Air using solid-phase microextraction and gas chromatography with Photoionization Detection. Adv. Sample Prep. 2024; 10: 100117. https://doi.org/10.1016/j.sampre.2024.100117

20. Sofronievska I., Petreska Stanoeva J., Bogdanov J., Stefova M. Assay of volatile organic compounds in urban air using sampling and gas chromatography coupled to mass spectrometry. Macedonian J. Ecol. Environ. 2022; 24: 103–13. https://doi.org/10.59194/mjee22242103s

21. Gu Z.Y., Yan X.P. Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Ed. Engl. 2010; 49(8): 1477–80. https://doi.org/10.1002/anie.200906560

22. Cruz L.P.S., Alves L.P., Santos A.V.S., Esteves M.B., Gomes Í.V.S., Nunes L.S.S. Assessment of BTEX concentrations in air ambient of gas states using passive sampling and the health risks for workers. J. Environ. Protect. 2017; 8: 12–25. https://doi.org/10.4236/jep 2017.81002

23. Zhu X., Ma H., Zhu X., Chen J. Determination of 67 volatile organic compounds in ambient air using thermal desorption-gas chromatography-mass spectrometry. Se Pu. 2019; 37(11): 1228–34. https://doi.org/10.3724/SP.J.1123.2019.04043 (in Chinese)

24. Baimatova N., Kenessov B., Koziel J.A., Carlsen L., Bektassov M., Demyanenko O.P. Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS. Talanta. 2016; 154: 46–52. https://doi.org/10.1016/j.talanta.2016.03.050

25. Baskaran D., Dhamodharan D., Behera U.S., Byun H.S. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. Environ. Res. 2024; 251(Pt. 1): 118472. https://doi.org/10.1016/j.envres.2024.118472

26. Hoang A.Q., Takahashi S. Analytical methods for determining organic compound in air. In: Sample Handling and Trace Analysis of Pollutants. Elsevier Science; 2025: 3–34.

27. Feng L., Hu X., Yu X., Zhang W. Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry. Se Pu. 2016; 34(2): 209–14. https://doi.org/10.3724/sp.j.1123.2015.09023 (in Chinese)

28. Cvetanović A. Extractions without organic solvents: advantages and disadvantages. Chem. Afr. 2019; 2(3): 343–9. https://doi.org/10.1007/s42250-019-00070-1

29. Badawy M.E.I., El-Nouby M.A.M., Kimani P.K., Lim L.W., Rabea E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022; 38(12): 1457–87. https://doi.org/10.1007/s44211-022-00190-8

30. Tkachyshyn V.S. Intoxications by carbon disulfide. Meditsina neotlozhnykh sostoyanii. 2020; 16(1): 123–6. https://elibrary.ru/hxovde (in Russian)


Review

For citations:


Nurislamova T.V., Popova N.A., Maltseva O.A., Kolmogortseva D.Yu. Methods for measuring mass concentrations of xylene isomers in ambient air (literature review). Hygiene and Sanitation. 2025;104(9):1216-1222. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-9-1216-1222. EDN: mmpluq

Views: 43


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)