ИСПОЛЬЗОВАНИЕ ПРЕПАРАТОВ ВАЛЬПРОЕВОЙ КИСЛОТЫ В КАЧЕСТВЕ РЕФЕРЕНТНОГО ВЕЩЕСТВА ДЛЯ ИЗУЧЕНИЯ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОГО МЕХАНИЗМА «ОБЕЗОГЕННОСТИ» РАЗРУШИТЕЛЕЙ ЭНДОКРИННОЙ СИСТЕМЫ
https://doi.org/10.47470/0016-9900-2017-96-5-422-426
Аннотация
Об авторах
Марина Геннадьевна АксёноваРоссия
О. О. Синицына
Россия
А. В. Кириллов
Россия
О. Б. Козлова
Россия
С. Г. Бурд
Россия
Список литературы
1. Grün F., Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006; 147(6 Suppl.): S50-5.
2. Thayer K.A., Heindel J.J., Bucher J.R., Gallo M.A. Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review. Environ. Health Perspect. 2012; 120(6): 779-89.
3. Product Knowledge Network. PFOA. Available at: http://www.productknowledge.com/PDF/PKN%20PDF_PFOA.pdf
4. Barry V., Darrow L.A., Klein M., Winquist A., Steenland K. Early life perfluorooctanoic acid (PFOA) exposure and overweight and obesity risk in adulthood in a community with elevated exposure. Environ. Res. 2014; 132: 62-9.
5. Kishi R., Nakajima T., Goudarzi H., Kobayashi S., Sasaki S., Okada E. et al. The Association of Prenatal Exposure to Perfluorinated Chemicals with Maternal Essential and Long-Chain Polyunsaturated Fatty Acids during Pregnancy and the Birth Weight of Their Offspring: The Hokkaido Study. Environ. Health Perspect. 2015; 123(10): 1038-45.
6. OECD Environment, Health and Safety Publications. Detailed review paper on the state of the science on novel in vitro and in vivo screening and testing methods and endpoints for valuating endocrine disruptors. Series on Testing & Assessment. Table 8-4. ENV/JM/MONO(2012)23. 2012; (178): 121.
7. Henley D.V., Mueller S., Korach K.S. The short-chain fatty acid methoxyacetic acid disrupts endogenous estrogen receptor-α-mediated signaling. Environ. Health Perspect. 2009; 117(11): 1702-6.
8. OECD Guidelines for the Testing of Chemicals. Available at: http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm
9. OECD and EU test guidelines. Available at: http://echa.europa.eu/support/oecd-eu-test-guidelines
10. Hara M., Alcoser S.Y., Qaadir A., Beiswenger K.K., Cox N.J., Ehrmann D.A. Insulin resistance is attenuated in women with polycystic ovary syndrome with the Pro(12)Ala polymorphism in the PPAR gamma gene. J. Clin. Endocrinol. Metab. 2002; 87(2): 772-5.
11. Stumvoll M., Wahl H.G., Loblein K., Becker R., Machicao F., Jacob S. et al. Pro12Ala Polymorphism in the Peroxisome Proliferator-Activated Receptor-g2 Gene Is Associated With Increased Antilipolytic Insulin Sensitivity. Diabetes. 2001; 50(4): 876-81.
12. Scaglioni S., Verduci E., Salvioni M., Biondi M.L., Radaelli G., Agostoni C. et al. PPAR-gamma2 Pro12Ala Variant, Insulin Resistance and Plasma Long-Chain Polyunsaturated Fatty Acids In Childhood Obesity. Pediatr. Res. 2006; 60(4): 485-9.
13. Desvergne B., Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocrine Rev. 1999; 20(5): 649-88.
14. Willson T.M., Lambert M.H., Kliewer S.A. Peroxisome proliferator-activated receptor γ and metabolic disease. Annu. Rev. Biochem. 2001; 70: 341-67.
15. Dreyer C., Krey G., Keller H., Givel F., Helftenbein G., Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992; 68(5): 879-87.
16. Semple R.K., Chatterjee V.K., O’Rahilly S. PPAR gamma and human metabolic disease. J. Clin. Invest. 2006; 116(3): 581-9.
17. Ristow M., Muller-Wieland D., Pfeiffer A., Krone W., Kahn C.R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med. 1998; 339(14): 953-9.
18. Razquin C., Marti A., Martinez J.A. Evidences on three relevant obesogenes: MC4R, FTO and PPARγ. Approaches for personalized nutrition. Mol. Nutr. Food Res. 2011; 55(1): 136-49.
19. Tonjes A., Scholz M., Loeffler M., Stumvoll M. Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma with pre-diabetic phenotypes: Meta-analysis of 57 studies on nondiabetic individuals. Diabetes Care. 2006; 29(11): 2489-97.
20. Pereira-Fernandes A., Vanparys C., Hectors T.L., Vergauwen L., Knapen D., Jorens P.G. et al. Unraveling the mode of action of an obesogen: mechanistic analysis of the model obesogen tributyltin in the 3T3-L1 cell line. Mol. Cell. Endocrinol. 2013; 370(1-2): 52-64.
21. Weiss E.P., Brown M.D., Shuldiner A.R., Hagberg J.M. Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction effects. Physiol Genomics. 2002; 10(3): 145-57.
22. Agren J.J., Vidgren H.M., Valve R.S., Laakso M., Uusitupa M.I. Postprandial responses of individual fatty acids in subjects homozygous for the threonine- or alanine-encoding allele in codon 54 of the intestinal fatty acid binding protein 2 gene. Am. J. Clin. Nutr. 2001; 73(1): 31-5.
23. Baier L.J., Sacchettini J.C., Knowler W.C., Eads J., Paolisso G., Tataranni P.A. et al. An Amino Acid Substitution in the Human Intestinal Fatty Acid Binding Protein Is Associated with Increased Fatty Acid Binding, Increased Fat Oxidation, and Insulin Resistance. J. Clin. Invest. 1995; 95(3): 1281-7.
Рецензия
Для цитирования:
Аксёнова М.Г., Синицына О.О., Кириллов А.В., Козлова О.Б., Бурд С.Г. ИСПОЛЬЗОВАНИЕ ПРЕПАРАТОВ ВАЛЬПРОЕВОЙ КИСЛОТЫ В КАЧЕСТВЕ РЕФЕРЕНТНОГО ВЕЩЕСТВА ДЛЯ ИЗУЧЕНИЯ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОГО МЕХАНИЗМА «ОБЕЗОГЕННОСТИ» РАЗРУШИТЕЛЕЙ ЭНДОКРИННОЙ СИСТЕМЫ. Гигиена и санитария. 2017;96(5):422-426. https://doi.org/10.47470/0016-9900-2017-96-5-422-426
For citation:
Aksenova M.G., Sinitsyna O.O., Kirillov A.V., Kozlova O.B., Burd S.G. VALPROIC ACID AS A REFERENCE SUBSTANCE FOR THE STUDY OF THE MOLECULAR-GENETIC MECHANISM OF OBESOGENITY OF ENDOCRINE DISRUPTERS. Hygiene and Sanitation. 2017;96(5):422-426. (In Russ.) https://doi.org/10.47470/0016-9900-2017-96-5-422-426