

Наноцеллюлозы: характеристика опасности и возможные риски (обзор литературы)
https://doi.org/10.47470/0016-9900-2023-102-2-181-190
Аннотация
Наноцеллюлозы (НЦ) имеют широкие перспективы применения в производстве изделий медицинского назначения, композиционных материалов и покрытий, электроники, пищевой и фармацевтической продукции. К основным видам НЦ относятся нановолокнистая (НВЦ), нанокристаллическая (НКЦ), выделяемые из природного (преимущественно растительного) сырья, и получаемая путём микробного синтеза бактериальная наноцеллюлоза (БНЦ). Производственный процесс НЦ может включать множество факторов, способных влиять на её токсикологические характеристики, такие как остаточные количества химикатов и ферментных препаратов, используемых при выделении и модификации НЦ, контаминация НЦ из природных источников микотоксинами, тяжёлыми металлами, пестицидами, диоксинами. В случае НЦ микробного происхождения остаётся открытым вопрос о безопасности соответствующих штаммов-продуцентов, большинство из которых являются генетически модифицированными. Отдельного внимания заслуживает способность НЦ проявлять токсичность для живых организмов в отличие от её химического аналога в традиционной форме. Расширение ассортимента продукции, содержащей НЦ и тесно контактирующей с человеком, в первую очередь пищевой продукции, упаковочных материалов, фармакологических препаратов и изделий медицинского назначения, требует тщательной оценки возможных рисков, связанных с воздействием НЦ на организм человека.
Целью настоящей статьи является обзор литературы о потенциальных рисках, обусловленных токсическим действием НЦ на живые организмы при различных путях экспозиции, за период с 2010 по 2021 г.
Приводятся сведения о токсичности в системах in vitro, в частности о способности к индукции окислительного стресса и воспаления. Представлены результаты исследований ингаляционной и пероральной токсичности in vivo, данные о канцерогенности, реакции иммунных клеток на НЦ и её способности к индукции иммунологической толерантности. По результатам сравнительного анализа проведённых исследований установлено, что различные виды НЦ слабо влияют на жизнеспособность клеток in vitro и не обладают выраженной острой токсичностью in vivo. Однако противоречивые результаты исследований провоспалительных и иммунологических эффектов различных форм НЦ указывают на необходимость проведения дальнейшего их изучения с целью установления максимальных недействующих доз, в первую очередь при ингаляционном и пероральном путях поступления.
Участие авторов. Все соавторы внесли равнозначный вклад в исследование и подготовку статьи к публикации.
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.
Финансирование. Поисково-аналитическая работа проведена за счёт средств субсидии на выполнение государственного задания в рамках Программы фундаментальных научных исследований (тема Минобрнауки России № 0410-2022-0003).
Поступила: 05.08.2022 / Принята к печати: 08.12.2022 / Опубликована: 25.03.2023
Об авторах
Иван Всеволодович ГмошинскийРоссия
Доктор биол. наук, гл. науч. сотр. лаб. пищевой токсикологии и оценки безопасности нанотехнологий ФГБУН «Федеральный исследовательский центр питания, биотехнологии и безопасности пищи», 109240, Москва.
e-mail: gmosh@ion.ru
Владимир А. Шипелин
Россия
Сергей А. Хотимченко
Россия
Список литературы
1. Dhali K., Ghasemlou M., Daver F., Cass P., Adhikari B. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 2021; 775: 145871. https://doi.org/10.1016/j.scitotenv.2021.145871
2. Fastmarkets. Nanocellulose: Packaging Applications and Markets. Available at: https://www.fastmarkets.com/forest-products/special-studies/nanocellulose?utm_ss=nanocellulose+applications+and+markets
3. Sharma A., Thakur M., Bhattacharya M., Mandal T., Goswami S. Commercial application of cellulose nano-composites – a review. Biotechnol. Rep. (Amst.). 2019; 21: e00316. https://doi.org/10.1016/j.btre.2019.e00316
4. de Amorim J.D.P., de Souza K.C., Duarte C.R., da Silva Duarte I., de Assis Sales F.R., Silva G.S., et al. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020; 18(3): 851–69. https://doi.org/10.1007/s10311-020-00989-9
5. Thomas P., Duolikun T., Rumjit N.P., Moosavi S., Lai C.W., Bin Johan M.R., et al. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J. Mech. Behav. Biomed. Mater. 2020; 110: 103884. https://doi.org/10.1016/j.jmbbm.2020.103884
6. Vasconcellos V.M., Farinas C.S., Ximenes E., Slininger P., Ladisch M. Adaptive laboratory evolution of nanocellulose-producing bacterium. Biotechnol. Bioeng. 2019; 116(8): 1923–33. https://doi.org/10.1002/bit.26997
7. Stoudmann N., Schmutz M., Hirsch C., Nowack B., Som C. Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology. 2020; 14(9): 1241–57. https://doi.org/10.1080/17435390.2020.1814440
8. Bonwick G., Bradley E., Lock I., Romero R. Bio-based materials for use in food contact applications. In: Report to the Food Standards Agency. York, UK: Fera Science Ltd.; 2019.
9. Michelin M., Gomes D.G., Romaní A., Polizeli M.L.T.M., Teixeira J.A. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules. 2020; 25(15): 3411. https://doi.org/10.3390/molecules25153411
10. Karim Z., Afrin S., Husain Q., Danish R. Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit. Rev. Biotechnol. 2017; 37(3): 355–70. https://doi.org/10.3109/07388551.2016.1163322
11. Гмошинский И.В., Шипелин В.А., Хотимченко С.А. Наноматериалы в пищевой продукции и ее упаковке: сравнительный анализ рисков и преимуществ. Анализ риска здоровью. 2018; (4): 134–42. https://doi.org/10.21668/health.risk/2018.4.16
12. Endes C., Camarero-Espinosa S., Mueller S., Foster E.J., Petri-Fink A., Rothen-Rutishauser B., et al. A critical review of the current knowledge regarding the biological impact of nanocellulose. J. Nanobiotechnology. 2016; 14(1): 78. https://doi.org/10.1186/s12951-016-0230-9
13. Male K.B., Leung A.C.W., Montes J., Kamen A., Luong J.H.T. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale. 2012; 4(4): 1373–9. https://doi.org/10.1039/c2nr11886f
14. Sunasee R., Carson M., Despres H.W., Pacherille A., Nunez K.D., Ckless K. Analysis of the immune and antioxidant response of cellulose nanocrystals grafted with β-cyclodextrin in myeloid cell lines. J. Nanomater. 2019; 2019: 4751827. https://doi.org/10.1155/2019/4751827
15. Sultan S., Mathew A.P. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale. 2018; 10(9): 4421–31. https://doi.org/10.1039/c7nr08966j
16. Leppiniemi J.P., Lahtinen A., Paajanen R., Mahlberg S., Metsa-Kortelainen T., Pinomaa H., et al. 3D-printable bioactivated nanocellulosealginate hydrogels. ACS Appl. Mater. Interfaces. 2017; 9(26): 21959–70. https://doi.org/10.1021/acsami.7b02756
17. Endes C., Mueller S., Kinnear C., Vanhecke D., Foster E.J., Petri-Fink A., et al. Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromolecules. 2015; 16(4): 1267–75. https://doi.org/10.1021/acs.biomac.5b00055
18. Jeong S.I., Lee S.E., Yang H., Jin Y.H., Park C.S., Park Y.S. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell Oxicol. 2010; 6(4): 373–80. https://doi.org/10.1007/s13273-010-0049-7
19. Moreira S., Silva N.B., Almeida-Lima J., Rocha H.A., Medeiros S.R., Alves C. Jr., et al. BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol. Lett. 2009; 189(3): 235–41. https://doi.org/10.1016/j.toxlet.2009.06.849
20. De Lima A., Cândido P., Fregonezi N.F., José A., Carvalho F., Trovatti E. TEMPO-oxidized cellulose nanofibers in vitro cyto-genotoxicity studies. BioNanoScience. 2020; 10: 766–72. https://doi.org/10.1007/s12668-020-00763-9
21. Dong S., Hirani A.A., Colacino K.R., Lee Y.W., Roman M. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano LIFE. 2012; 02(03): 1241006. https://doi.org/10.1142/S1793984412410061
22. Mahmoud K.A., Mena J.A., Male K.B., Hrapovic S., Kamen A., Luong J.H.T. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl. Mater. Interfaces. 2010; 2(10): 2924–32. https://doi.org/10.1021/am1006222
23. Catalan J., Ilves M., Jarventaus H., Hannukainen K.S., Kontturi E., Vanhala E., et al. Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environ. Mol. Mutagen. 2015; 56(2): 171–82. https://doi.org/10.1002/em.21913
24. Hanif Z., Ahmed F.R., Shin S.W., Kim Y.K., Um S.H. Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma. Colloids Surf. B Biointerfaces. 2014; 119: 162–5. https://doi.org/10.1016/j.colsurfb.2014.04.018
25. Pereira M.M., Raposo N.R.B., Brayner R., Teixeira E.M., Oliveira V., Quintao C.C.R, et al. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology. 2013; 24(7): 075103. https://doi.org/10.1088/0957-4484/24/7/075103
26. Čolić M., Mihajlović D., Mathew A., Naseri N., Kokol V. Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose. 2015; 22(1): 763–78. https://doi.org/10.1007/s10570-014-0524-8
27. Endes C., Schmid O., Kinnear C., Mueller S., Camarero-Espinosa S., Vanhecke D., et al. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Part. Fibre Toxicol. 2014; 11: 40. https://doi.org/10.1186/s12989-014-0040-x
28. Menas A.L., Yanamala N., Farcas M.T., Russo M., Friend S., Fournier P.M., et al. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: cytotoxicity or inflammation? Chemosphere. 2017; 171: 671–80. https://doi.org/10.1016/j.chemosphere.2016.12.105
29. Ventura C., Lourenco A.F., Sousa-Uva A., Ferreira P.J.T., Silva M.J. Evaluating the genotoxicity of cellulose nanofibrils in a co-culture of human lung epithelial cells and monocyte-derived macrophages. Toxicol. Lett. 2018: 291: 173–83. https://doi.org/10.1016/j.toxlet.2018.04.013
30. Vartiainen J., Pöhler T., Sirola K., Pylkkänen L., Alenius H., Hokkinen J., et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose. 2011; 18(3): 775–86. https://doi.org/10.1007/s10570-011-9501-7
31. Clift M.J.D., Foster E.J., Vanhecke D., Studer D., Wick P., Gehr P., et al. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules. 2011; 12(10): 3666–73. https://doi.org/10.1021/bm200865j
32. Lopes V.R., Sanchez-Martinez C., Strømme M., Ferraz N. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol. 2017; 14(1): 1–13. https://doi.org/10.1186/s12989-016-0182-0
33. Ilves M., Vilske S., Aimonen K., Lindberg H.K., Pesonen S., Wedin I., et al. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology. 2018; 12(7): 729–46. https://doi.org/10.1080/17435390.2018.1472312
34. Bhattacharya K., Kiliç G., Costa P.M., Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology. 2017; 11(6): 809–26. https://doi.org/10.1080/17435390.2017.1363309
35. Kovacs T., Naish V., O’Connor B., Blaise C., Gagne F., Hall L., et al. An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology. 2010; 4(3): 255–70. https://doi.org/10.3109/17435391003628713
36. Aimonen K., Suhonen S., Hartikainen M., Lopes V.R., Norppa H., Ferraz N., et al. Role of surface chemistry in the in vitro lung response to nanofibrillated cellulose. Nanomaterials (Basel). 2021; 11(2): 389. https://doi.org/10.3390/nano11020389
37. de Lima R., Feitosa L.O., Maruyama C.R., Barga M.A., Yamawaki P.C., Vieira I.J., et al. Evaluation of the genotoxicity of cellulose nanofibers. Int. J. Nanomedicine. 2012; 7: 3555–65. https://doi.org/10.2147/ijn.s30596
38. Hannukainen K.S., Suhonen S., Savolainen K., Norppa H. Genotoxicity of nanofibrillated cellulose in vitro as measured by enzyme comet assay. Toxicol. Lett. 2012; 211: S71. https://doi.org/10.1016/j.toxlet.2012.03.276
39. Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010; 7: 5. https://doi.org/10.1186/1743-8977-7-5
40. Shatkin J.A., Kim B. Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap. Environ. Sci.: Nano. 2015; (2): 477–99. https://doi.org/10.1039/C5EN00059A
41. Hadrup N., Bram K., Berthing T., Wol H., Bengtson S., Kofoed C., et al. Pulmonary effects of nano fibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses. Environ. Toxicol. Pharmacol. 2019; 66: 116–25. https://doi.org/10.1016/j.etap.2019.01.003
42. Park E.J., Khaliullin T.O., Shurin M.R., Kisin E.R., Yanamala N., Fadeel B., et al. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J. Immunotoxicol. 2018; 15(1): 12–23. https://doi.org/10.1080/1547691x.2017.1414339
43. Dobrovolskaia M.A., Shurin M., Shvedova A.A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 2016; 299: 78–89. https://doi.org/10.1016/j.taap.2015.12.022
44. Li Y., Fujita M., Boraschi D. Endotoxin contamination in nanomaterials leads to the misinterpretation of immunosafety results. Front. Immunol. 2017; 8: 472–7. https://doi.org/10.3389/fimmu.2017.00472
45. ISO 29701:2010. Nanotechnologies — Endotoxin test on nanomaterial samples for in vitro systems — Limulus amebocyte lysate (LAL) test. Available at https://www.iso.org/standard/45640.html
46. Becklake M.R. Asbestos-related diseases of lung and other organs – their epidemiology and implications for clinical practice. Am. Rev. Respir. Dis. 1976; 114(1): 187–227. https://doi.org/10.1164/arrd.1976.114.1.187
47. Catalán J., Rydman E., Aimonen K., Hannukainen K.S., Suhonen S., Vanhala E., et al. Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis. 2017; 32(1): 23–31. https://doi.org/10.1093/mutage/gew035
48. Yanamala N., Farcas M.T., Hatfield M.K., Kisin E.R., Kagan V.E., Geraci C.L., et al. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng. 2014; 2(7): 1691–8. https://doi.org/10.1021/sc500153k
49. Shvedova A.A., Kisin E.R., Yanamala N., Farcas M.T., Menas A.L., Williams A., et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol. 2016; 13(1): 28. https://doi.org/10.1186/s12989-016-0140-x
50. Farcas M.T., Kisin E.R., Menas A.L., Gutkin D.W., Star A., Reiner R.S., et al. Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. J. Toxicol. Environ. Health A. 2016; 79(21): 984–97. https://doi.org/10.1080/15287394.2016.1211045
51. Shatkin J.A., Oberdorster G. Comment on Shvedova et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol. 2016; 13(1): 59. https://doi.org/10.1186/s12989-016-0170-4
52. Kobayashi N., Izumi H., Morimoto Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health. 2017; 59(5): 394–407. https://doi.org/10.1539/joh.17-0089-ra
53. Silva-Carvalho R., Silva J.P., Ferreirinha P., Leitão A.F., Andrade F.K., Gil da Costa R.M., et al. Inhalation of bacterial cellulose nanofibrils triggers an inflammatory response and changes lung tissue morphology of mice. Toxicol. Res. 2019; 35(1): 45–63. https://doi.org/10.5487/tr.2019.35.1.045
54. Ede J.D., Ong K.J., Goergen M., Rudie A., Pomeroy-Carter C.A., Shatkin J.A. Risk analysis of cellulose nanomaterials by inhalation: current state of science. Nanomaterials (Basel). 201; 9(3): 337. https://doi.org/10.3390/nano9030337
55. Sai T., Fujita K. A review of pulmonary toxicity studies of nanocellulose. Inhal. Toxicol. 2020; 32(6): 231–9. https://doi.org/10.1080/08958378.2020.1770901
56. Lopes V.R., Strømme M., Ferraz N. In vitro biological impact of nanocellulose fibers on human gut bacteria and gastrointestinal cells. Nanomaterials (Basel). 2020; 10(6): 1159. https://doi.org/10.3390/nano10061159
57. DeLoid G.M., Cao X., Molina R.M., Silva D.I., Bhattacharya K., Ng K.W., et al. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ. Sci. Nano. 2019; 6(7): 2105–15. https://doi.org/10.1039/c9en00184k
58. O’Connor B., Berry R., Goguen R. Commercialization of cellulose nanocrystal (NCCTM) production: a business case focusing on the importance of proactive ehs management. In: Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management. Amsterdam: Elsevier Inc.; 2014.
59. Ong K.J., Shatkin J.A., Nelson K., Ede J.D., Retsina T. Establishing the safety of novel bio-based cellulose nanomaterials for commercialization. NanoImpact. 2017; 6: 19–29. https://doi.org/10.1016/j.impact.2017.03.002
60. Adewuyi A., Otuechere C.A., Adebayo O.L., Anazodo C., Pereira F.V. Renal toxicological evaluations of sulphonated nanocellulose from Khaya sengalensis seed in Wistar rats. Chem. Biol. Interact. 2018; 284: 56–68. https://doi.org/10.1016/j.cbi.2018.02.015
61. Otuechere C.A., Adewuyi A., Adebayo O.L., Ebigwei I.A. In vivo hepatotoxicity of chemically modified nanocellulose in rats. Hum. Exp. Toxicol. 2020; 39(2): 212–23. https://doi.org/10.1177/0960327119881672
62. Toyokuni S. Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv. Drug Deliv. Rev. 2013; 65(15): 2098–110. https://doi.org/10.1016/j.addr.2013.05.011
63. Pitkanen M., Kangas H., Laitinen O., Sneck A., Lahtinen P., Peresin M.S., et al. Characteristics and safety of nano-sized cellulose fibrils. Cellulose. 2014; 21: 3871–86. https://doi.org/10.1007/s10570-014-0397-x
64. Čolić M., Tomić S., Bekić M. Immunological aspects of nanocellulose. Immunol. Lett. 2020; 222: 80–9. https://doi.org/10.1016/j.imlet.2020.04.004
65. Kollar P., Zavalova V., Hosek J., Havelka P., Sopuch T., Karpisek M., et al. Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells. Int. Immunopharmacol. 2011; 11(8): 997–1001. https://doi.org/10.1016/j.intimp.2011.02.016
66. Hua K., Ålander E., Lindström T., Mihranyan A., Strømme M., Ferraz N. Surface chemistry of nanocellulose fibers directs monocyte/macrophage response. Biomacromolecules. 2015; 16(9): 2787–95. https://doi.org/10.1021/acs.biomac.5b00727
67. Nordli H.R., Pukstad B., Chinga-Carrasco G., Rokstad A.M. Ultrapure wood nanocellulose—assessments of coagulation and initial inflammation potential. ACS Appl. Bio Mater. 2019; 2(3): 1107–18. https://doi.org/10.1021/acsabm.8b00711
68. Rashad A., Suliman S., Mustafa M., Pedersen T.Ø., Campodoni E., Sandri M., et al. Inflammatory responses and tissue reactions to wood-Based nanocellulose scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2019; 97: 208–21. https://doi.org/10.1016/j.msec.2018.11.068
69. Nishiguchi T., Taguchi A. Thixotropic, cell-infiltrative nanocellulose hydrogel that promotes in vivo tissue remodeling. ACS Biomater. Sci. Eng. 2020; 6(2): 946–58. https://doi.org/10.1021/acsbiomaterials.9b01549
70. Wang X., Chang C.H., Jiang J., Liu Q., Liao Y.P., Lu J., et al. The crystallinity and aspect ratio of cellulose nanomaterials determine their pro-inflammatory and immune adjuvant effects in vitro and in vivo. Small. 2019; 15(42): e1901642. https://doi.org/10.1002/smll.201901642
71. Sunasee R., Araoye E., Pyram D., Hemraz U.D., Boluk Y., Ckless K. Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1β secretion associated with mitochondrial ROS production. Biochem. Biophys. Rep. 2015; 4: 1–9. https://doi.org/10.1016/j.bbrep.2015.08.008
72. Guglielmo A., Sabra A., Elbery M., Cerveira M.M., Ghenov F., Sunasee R., et al. A mechanistic insight into curcumin modulation of the IL-1β secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells. Chem. Biol. Interact. 2017; 274: 1–12. https://doi.org/10.1016/j.cbi.2017.06.028
73. Osorio M., Cañas A., Puerta J., Díaz L., Naranjo T., Ortiz I., et al. Ex vivo and in vivo biocompatibility assessment (blood and tissue) of three-dimensional bacterial nanocellulose biomaterials for soft tissue implants. Sci. Rep. 2019; 9(1): 10553. https://doi.org/10.1038/s41598-019-46918-x
74. Xi Loh E.Y., Fauzi M.B., Ng M.H., Ng P.Y., Ng S.F., Ariffin H., et al. Cellular and molecular interaction of human dermal fibroblasts with bacterial nanocellulose composite hydrogel for tissue regeneration. ACS Appl. Mater. Interfaces. 2018; 10(46): 39532–43. https://doi.org/10.1021/acsami.8b16645
75. Kim G.D., Yang H., Park H.R., Park C.S., Park Y.S., Lee S.E. Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip J. 2013; 7: 201–9. https://doi.org/10.1007/s13206-013-7302-9
76. Tomić S., Kokol V., Mihajlović D., Mirčić A., Čolić M. Native cellulose nanofibrils induce immune tolerance in vitro by acting on dendritic cells. Sci. Rep. 2016; 6: 31618. https://doi.org/10.1038/srep31618
77. Tomić S., Ilić N., Kokol V., Gruden-Movsesijan A., Mihajlović D., Bekić M., et al. Functionalization-dependent effects of cellulose nanofibrils on tolerogenic mechanisms of human dendritic cells. Int. J. Nanomedicine. 2018; 13: 6941–60. https://doi.org/10.2147/ijn.s183510
78. Erdem J.S., Alswady-Hoff M., Ervik T.K., Skare Ø., Ellingsen D.G., Zienolddiny S. Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials. 2019; 203: 31–42. https://doi.org/10.1016/j.biomaterials.2019.02.025
79. Ferrer A., Pal L., Hubbe M. Nanocellulose in packaging: advances in barrier layer technologies. Ind. Crops Prod. 2017; 95: 574–82. https://doi.org/10.1016/j.indcrop.2016.11.012
80. Fink H., Hong J., Drotz K., Risberg B., Sanchez J., Sellborn A. An in vitro study of blood compatibility of vascular grafts made of bacterial cellulose in comparison with conventionallyused graft materials. J. Biomed. Mater. Res. A, 2011; 97A(1): 52–8. https://doi.org/10.1002/jbm.a.33031
Рецензия
Для цитирования:
Гмошинский И.В., Шипелин В.А., Хотимченко С.А. Наноцеллюлозы: характеристика опасности и возможные риски (обзор литературы). Гигиена и санитария. 2023;102(2):181-190. https://doi.org/10.47470/0016-9900-2023-102-2-181-190
For citation:
Gmoshinski I.V., Schipelin V.A., Khotimchenko S.A. Nanocelluloses: hazard characteristics and possible risks (literature review). Hygiene and Sanitation. 2023;102(2):181-190. (In Russ.) https://doi.org/10.47470/0016-9900-2023-102-2-181-190