Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Nanorobotics in biomedical sciences (literature review)

https://doi.org/10.47470/0016-9900-2025-104-9-1204-1208

EDN: aynxcp

Abstract

Nanomedicine is a scientific field resulting from the combination of nanotechnology and medicine, utilizing the high accuracy and wide adaptability of functional nanoscale devices called nanorobots or nanobots. Nanobots are emerging as key players in novel medical applications and, in conjunction with the rapidly evolving Artificial Intelligence (AI) technologies, may significantly improve the treatment and diagnostic outcomes in the context of precision medicine. Nanorobotics, as a subfield of nanomedicine, involves the design, creation, and deployment of autonomous or semi-autonomous nanoscale devices capable of performing specific medical tasks at the molecular or cellular level. The integration of AI further enhances the capabilities of nanobots by enabling them to adapt to dynamic biological environments, learn from interactions, and optimize treatment strategies. Their precision and ability to operate at the cellular or subcellular scale are particularly advantageous in targeting diseases at their source, such as cancer or genetic disorders, without causing damage to surrounding intact tissues. Herein, this short review article aims to present an overview of the most conventional nanobot-based therapeutics and diagnostics that have been widely explored so far. Furthermore, we emphasize on the challenges this technology faces in clinical application, detailing issues in safety assessment, diverse biological effects, and regulatory restrictions. Finally, we provide our perspective on the future directions of nanomedicine.

Contribution:
Nikolopoulou D.I. – writing text, the concept and design of the study, editing;
Karampatzakis T. – writing text, the design of the study, editing;
Kouretas D. – writing text, editing;
Fedorov D.S.
– writing text, editing;
Tsintarakis A. – writing text, editing;
Kirithras E. – editing;
Taghizadehghalehjoughi A. – editing;
Rakitsky V.N. – editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. The study had no sponsorship.

Received: April 15, 2025 / Accepted: June 26, 2025 / Published: October 20, 2025

About the Authors

Dimitra I. Nikolopoulou
University of Crete
Russian Federation

Researcher, Laboratory of toxicology and forensic sciences, Medical School, University of Crete, Heraklion, P.O. 71003, The Hellenic Republic

e-mail: d.nikolopoulou@uoc.gr 



Thomas Karampatzakis
University of Thessaly
Russian Federation

Postgraduate student, Laboratory of animal physiology, Department of biochemistry and biotechnology, University of Thessaly, Larissa, 41500, The Hellenic Republic

e-mail: tkarampatzakis@uth.gr



Demetrios Kouretas
University of Thessaly
Russian Federation

Professor, Laboratory of animal physiology, Department of biochemistry and biotechnology, University of Thessaly, Larissa, 41500, The Hellenic Republic

e-mail: dkouret@uth.gr



Dmitry S. Fedorov
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences
Russian Federation

Junior researcher, Siberian Federal Scientific Centre of Agro-BioTechnologies, Krasnoobsk, 630501, Russian Federation

e-mail: dmtry.fedorov@gmail.com



Antonis Tsintarakis
Institute of Chemical Biology, National Hellenic Research Foundation
Russian Federation

External researcher, Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635, Athens, The Hellenic Republic

e-mail: tsintarakis@hotmail.com



Evangelos Kirithras
University of Crete
Russian Federation

Doctor, external researcher, Laboratory of toxicology and forensic sciences, Medical School, University of Crete, Heraklion, 71003, The Hellenic Republic

e-mail: vaggelis@libero.it



Ali Taghizadehghalehjoughi
Bilecik Sheikh Edebali University
Russian Federation

Medical pharmacologist, associate professor, Medical Pharmacology faculty, Bilecik Sheikh Edebali University, Bilecik, 11230, The Republic of Turkey

e-mail: alitgzd@gmail.com



Valerii N. Rakitskii
Federal Scientific Center of Hygiene named after F.F. Erisman
Russian Federation

DSc (Medicine), professor, Academician of the RAS, Scientific Director of the Institute of Hygiene, Pesticide Toxicology and Chemical Safety, Federal Scientific Center of Hygiene named after F.F. Erisman, Mytishchi, 141014, Russian Federation

e-mail: rakitskii.vn@fncg.ru



References

1. Anzar N., Yadav N., Narang J. Chapter 21. Nanorobots for improved theranostic applications. In: Advanced Nanoformulations. Elsevier; 2023: 587–611. https://doi.org/10.1016/B978-0-323-85785-7.00002-4

2. Aggarwal M., Kumar S. The use of nanorobotics in the treatment therapy of cancer and its future aspects: a review. Cureus. 2022; 14(9): e29366. https://doi.org/10.7759/cureus.29366

3. Kumar S. Nanorobots a future device for diagnosis and treatment. J. Pharm. Pharm. 2018; 5(1): 44–9. https://doi.org/10.15436/2377-1313.18.1815

4. Zhang Y., Zhang Y., Han Y., Gong X. Micro/nanorobots for medical diagnosis and disease treatment. Micromachines (Basel). 2022; 13(5): 648. https://doi.org/10.3390/mi13050648

5. Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.D.P., Acosta-Torres L.S., et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology. 2018; 16(1): 71. https://doi.org/10.1186/s12951-018-0392-8

6. Suhail M., Khan A., Rahim M.A., Naeem A., Fahad M., Badshah S.F., et al. Micro and nanorobot-based drug delivery: an overview. J. Drug Target. 2022; 30(4): 349–58. https://doi.org/10.1080/1061186X.2021.1999962

7. Jiménez-Jiménez C., Moreno V.M., Vallet-Regí M. Bacteria-assisted transport of nanomaterials to improve drug delivery in cancer therapy. Nanomaterials (Basel). 2022; 12(2): 288. https://doi.org/10.3390/nano12020288

8. Esteban-Fernández de Ávila B., Angsantikul P., Ramírez-Herrera D.E., Soto F., Teymourian H., Dehaini D., et al. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 2018; 3(18): eaat0485. https://doi.org/10.1126/scirobotics.aat0485

9. Agrahari V., Agrahari V., Chou M.L., Chew C.H., Noll J., Burnouf T. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials. 2020; 260: 120163. https://doi.org/10.1016/j.biomaterials.2020.120163

10. Chen B., Tan H., Ding M., Liu L., Wang S., Peng X., et al. Nanorobot-mediated synchronized neuron activation. ACS Nano. 2023; 17(14): 13826–39. https://doi.org/10.1021/acsnano.3c03575

11. Perán M., García M.A., Lopez-Ruiz E., Jiménez G., Marchal J.A. How can nanotechnology help to repair the body? Advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials (Basel). 2013; 6(4): 1333–59. https://doi.org/10.3390/ma6041333

12. Smith I.O., Liu X.H., Smith L.A., Ma P.X. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009; 1(2): 226–36. https://doi.org/10.1002/wnan.26

13. Mitra M. Medical nanobot for cell and tissue repair. Int. J. Robot. Autom. 2017; 2(6). https://doi.org/10.15406/iratj.2017.02.00038

14. Rani S., Lakhwani K., Kumar S. Three dimensional objects recognition & pattern recognition technique; related challenges: A review. Multimed. Tools Appl. 2022; 81: 17303–46. https://doi.org/10.1007/s11042-022-12412-2

15. Johnson K.B., Wei W.Q., Weeraratne D., Frisse M.E., Misulis K., Rhee K., et al. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021; 14(1): 86–93. https://doi.org/10.1111/cts.12884

16. Lee D., Yoon S.N. Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges. Int. J. Environ. Res. Public Health. 2021; 18(1): 271. https://doi.org/10.3390/ijerph18010271

17. Fukuma R., Yanagisawa T., Nishimoto S., Sugano H., Tamura K., Yamamoto S., et al. Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. Commun. Biol. 2022; 5: 214. https://doi.org/10.1038/s42003-022-03137-x

18. Fukuma R., Yanagisawa T., Nishimoto S., Sugano H., Tamura K., Yamamoto S., et al. Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. Commun. Biol. 2022; 5(1): 214. https://doi.org/10.1038/s42003-022-03137-x

19. Dicianno B.E., Parmanto B., Fairman A.D., Crytzer T.M., Yu D.X., Pramana G., et al. Perspectives on the evolution of mobile (mHealth) technologies and application to rehabilitation. Phys. Ther. 2015; 95(3): 397–405. https://doi.org/10.2522/ptj.20130534

20. Coghlan S., Leins K. “Living robots”: ethical questions about xenobots. Am. J. Bioeth. 2020; 20(5): W1–3. https://doi.org/10.1080/15265161.2020.1746102

21. Arvidsson R., Hansen S.F. Environmental and health risks of nanorobots: an early review. Environ. Sci. Nano. 2020; 7(10): 2875–86. https://doi.org/10.1039/D0EN00570C

22. Ray P.C., Yu H., Fu P.P. Toxicity and environmental risks of nanomaterials: challenges and future needs. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009; 27(1): 1–35. https://doi.org/10.1080/10590500802708267

23. Saptarshi S.R., Duschl A., Lopata A.L. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J. Nanobiotechnology. 2013; 11: 26. https://doi.org/10.1186/1477-3155-11-26

24. Yadav R.D., Chaudhary A. Nano-bio surface interactions, cellular internalisation in cancer cells and e-data portals of nanomaterials: A review. IET Nanobiotechnol. 2021; 15(6): 519–31. https://doi.org/10.1049/nbt2.12040

25. Bhattacharya K., Mukherjee S.P., Gallud A., Burkert S.C., Bistarelli S., Bellucci S., et al. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine. 2016; 12(2): 333–51. https://doi.org/10.1016/j.nano.2015.11.011

26. Albalawi F., Hussein M.Z., Fakurazi S., Masarudin M.J. Engineered nanomaterials: the challenges and opportunities for nanomedicines. Int. J. Nanomedicine. 2021; 16: 161–84. https://doi.org/10.2147/IJN.S288236

27. Xuan L., Ju Z., Skonieczna M., Zhou P.K., Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (2020). 2023; 4(4): e327. https://doi.org/10.1002/mco2.327

28. Iqbal M.J., Kabeer A., Abbas Z., Siddiqui H.A., Calina D., Sharifi-Rad J., et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal. 2024; 22(1): 7. https://doi.org/10.1186/s12964-023-01398-5

29. Asaro P. Autonomous weapons and the ethics of artificial intelligence. In: Liao S.M., ed. Ethics of Artificial Intelligence. New York; 2020. https://doi.org/10.1093/oso/9780190905033.003.0008

30. Rahman M.A., Victoros E., Ernest J., Davis R., Shanjana Y., Islam M.R. Impact of Artificial Intelligence (AI) Technology in healthcare sector: a critical evaluation of both sides of the coin. Clin. Pathol. 2024; 17: 2632010X241226887. https://doi.org/10.1177/2632010X241226887

31. Zhou H., Mayorga-Martinez C.C., Pané S., Zhang L., Pumera M. Magnetically driven micro and nanorobots. Chem. Rev. 2021; 121(8): 4999–5041. https://doi.org/10.1021/acs.chemrev.0c01234

32. Hua S., de Matos M.B.C., Metselaar J.M., Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 2018; 9: 790. https://doi.org/10.3389/fphar.2018.00790

33. Malik S., Muhammad K., Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules. 2023; 28(18): 6624. https://doi.org/10.3390/molecules28186624

34. Wasti S., Lee I.H., Kim S., Lee J.H., Kim H. Ethical and legal challenges in nanomedical innovations: a scoping review. Front. Genet. 2023; 14: 1163392. https://doi.org/10.3389/fgene.2023.1163392

35. Mühlebach S. Regulatory challenges of nanomedicines and their follow-on versions: A generic or similar approach? Adv. Drug Deliv. Rev. 2018; 131: 122–31. https://doi.org/10.1016/j.addr.2018.06.024


Review

For citations:


Nikolopoulou D.I., Karampatzakis T., Kouretas D., Fedorov D.S., Tsintarakis A., Kirithras E., Taghizadehghalehjoughi A., Rakitskii V.N. Nanorobotics in biomedical sciences (literature review). Hygiene and Sanitation. 2025;104(9):1204-1208. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-9-1204-1208. EDN: aynxcp

Views: 48


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)