Preview

Hygiene and Sanitation

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of accident risk factors at chemically hazardous facilities (literature review)

https://doi.org/10.47470/0016-9900-2025-104-11-1418-1427

EDN: maqjzb

Abstract

Accidents at chemically hazardous facilities pose a significant threat to public health and the environment. With the growing scale of chemical production and the widespread use of hazardous chemicals, there is a growing need for a systematic risk assessment at all stages of the chemical product life cycle.

The objective of this study was to identify and analyze the risk factors contributing to accidents at chemically hazardous facilities.

To prepare this review, a literature search was conducted for scientific and regulatory publications on the assessment of chemical risks at facilities handling hazardous substances. The search was carried out using scientific databases such as Google Scholar, eLibrary, and CyberLeninka. Special attention was given to reports from the last ten years (2015-2025), although earlier sources were also included if they contained significant information relevant to the topic.

The main causes of accidents at different stages of chemical production were identified, and incident types were classified according to the physical state of the hazardous chemicals and the conditions of their release. The roles of technical malfunctions, human error, and natural factors were highlighted. Accidents at chemically hazardous facilities (CHFs) were shown to result often from a combination of several interrelated factors that can amplify one another.

Preventing such accidents requires strict compliance with industrial safety regulations, continuous monitoring of working conditions, and regular inspection of equipment. Ensuring chemical safety demands a comprehensive approach, including technological modernization, personnel training, regulatory improvements, and interagency cooperation. Combining these elements will reduce the likelihood of accidents and improve preparedness for effective response when they occur.

Contribution:
Lebed-Sharlevich Ya.I. – collection and processing of material, writing a text;
Mamonov R.A. – editing;
Savostikova O.N. – editing.
All authors are responsible for the concept and design of the study, integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. The study was conducted within the framework of the State Assignment.

Received: August 1, 2025 / Accepted: November 3, 2025 / Published: December 19, 2025

About the Authors

Yana I. Lebed-Sharlevich
Centre for Strategic Planning of the federal medical biological agency of Russia
Russian Federation

PhD (Biology), senior researcher, Department of preventive toxicology and biomedical research, Centre for Strategic Planning of the Federal medical and biological agency of Russia, Moscow, 119121, Russian Federation

e-mail: YaSharlevich@cspfmba.ru



Roman A. Mamonov
Centre for Strategic Planning of the federal medical biological agency of Russia
Russian Federation

PhD (Medicine), head, Department of preventive toxicology and biomedical research, Centre for Strategic Planning of the Federal medical and biological agency of Russia, Moscow, 119121, Russian Federation

e-mail: RMamonov@cspfmba.ru



Olga N. Savostikova
Centre for Strategic Planning of the federal medical biological agency of Russia
Russian Federation

PhD (Medicine), head, Department of physicochemical research and ecotoxicology, Centre for Strategic Planning of the Federal medical and biological agency of Russia, Moscow, 119121, Russian Federation

e-mail: OSavostikova@cspfmba.ru



References

1. Ahmad S.I., Hashim H., Hassim M.H., Rashid R. Development of hazard prevention strategies for inherent safety assessment during early stage of process design. Process Saf. Environ. Prot. 2019; 121(9): 271–80. https://doi.org/10.1016/j.psep.2018.10.006

2. Azmi M.S., Hanida A.A., Noor D.A.M. Way forward in Process Safety Management (PSM) for effective implementation in process industries. Curr. Opin. Chem. Eng. 2016; 14: 56–60. https://doi.org/10.1016/j.coche.2016.08.006

3. Bai M., Qi M., Shu C.M., Reniers G., Khan F., Chen C., et al. Why do major chemical accidents still happen in China: Analysis from a process safety management perspective. Process Saf. Environ. Prot. 2023; 176: 411–20. https://doi.org/10.1016/j.psep.2023.06.040

4. Kiprya A., Kinzhigaliev V. Definition of population protection measures in accidents at chemically hazardous facilities. Pozharnaya i tekhnosfernaya bezopasnost’: problemy i puti sovershenstvovaniya. 2021; (3): 186–9. https://elibrary.ru/kzvdas (in Russian)

5. Federal Biomedical Agency. Protection of population and serviced territories. Available at: https://fmba.gov.ru/deyatelnost/osnovnye-napravleniya-deyatelnosti/zashchita-naseleniya-i-obsluzhivaemykh-territoriy/ (in Russian)

6. Kovalev S.A., Kuzevanov V.S. Anthology of Safety: Chemical Safety [Antologiya bezopasnosti: khimicheskaya bezopasnost’]. Omsk; 2019. (in Russian)

7. Akimov A.G., Lemeshkin R.N., Zhekalov A.N., Butuzov S.V., Fomichev A.V. Liquidation of medical consequences of chemical accidents and disasters. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2014; (3): 210–5. https://elibrary.ru/snwmiv (in Russian)

8. Wang Y., Henriksen T., Deo M., Mentzer R.A. Factors contributing to US chemical plant process safety incidents from 2010 to 2020. J. Loss Prev. Process Ind. 2021; 71: 104512. https://doi.org/10.1016/j.jlp.2021.104512

9. Sednev V.A. Analysis of factors affecting the organization protection of the population in case of chemical accidents dangerous objects of Stavropol territory. Problemy bezopasnosti i chrezvychainykh situatsii. 2022; (4): 39–55. https://doi.org/10.36535/0869-4176-2022-04-4 https://elibrary.ru/pqdyti (in Russian)

10. Wang J., Fan Y., Niu Y. Routes to failure: Analysis of chemical accidents using the HFACS. J. Loss Prev. Process Ind. 2022; 75: 104695. https://doi.org/10.1016/j.jlp.2021.104695

11. Jung S., Pak S., Lee K., Kang C. Classification of human failure in chemical plants: case study of various types of chemical accidents in South Korea from 2010 to 2017. Int. J. Environ. Res. Public Health. 2021; 18(21): 11216. https://doi.org/10.3390/ijerph182111216

12. Emergencies at chemically hazardous facilities. Available at: https://professia-uc.ru/f/93_chrezvychajnye_situacii_na_himicheski_opasnyh_obektah.pdf?ysclid=manxi5e36u143950748 (in Russian)

13. Zhou J., Reniers G., Zhang L. A weighted fuzzy Petri-net based approach for security risk assessment in the chemical industry. Chem. Eng. Sci. 2017; 174: 136–45. https://doi.org/10.1016/j.ces.2017.09.002

14. Basurov V.A., Zaznobina N.I. Chemical Safety [Khimicheskaya bezopasnost’]. Nizhny Novgorod; 2016. (in Russian)

15. Grishkevich A., Reshetnikov V., Arzhanuhin I. Ways to reduce the environmental impact on the population and territories in case of accidents on chemically hazardous objects. Nauchnye i obrazovatel’nye problemy grazhdanskoi zashchity. 2014; (2): 24–8. https://elibrary.ru/sqckcb (in Russian)

16. Grosheva A.I. Predicting the impact of chemically hazardous substances in the area of water intakes of industrial cities in the central and eastern zones of the Orenburg region. Shag v nauku. 2020; (4): 17–20. https://elibrary.ru/lhzzaf (in Russian)

17. State Report «On the State of Population and Territory Protection in the Russian Federation from Natural and Man-Made Emergencies in 2023». Moscow; 2024. (in Russian)

18. ADR. European Agreement concerning the International Carriage of Dangerous Goods by Road. Volume I. Available at: https://rosavtotransport.ru/netcat_files/15/54/20190101_ADR_2019_vol1_R.pdf?ysclid=masqz13j5894082411 (in Russian)

19. ADR. Agreement concerning the International Carriage of Dangerous Goods by Road. Volume II. Available at: https://rosavtotransport.ru/netcat_files/15/54/20190101_ADR_2019_vol2_R.pdf?ysclid=masqr4u0zh786418865 (in Russian)

20. Ochkalova A. Characteristics and modern problems of transportation of dangerous cargoes in Russia. Vestnik universiteta. 2016; (3): 92–6. https://elibrary.ru/wciett (in Russian)

21. Ghaleh S., Omidvari M., Nassiri P., Momeni M., Lavasani S.M.M. Pattern of safety risk assessment in road fleet transportation of hazardous materials (oil materials). Saf. Sci. 2019; 116: 1–12. https://doi.org/10.1016/j.ssci.2019.02.039

22. Panyukhin S.E. To the question about the possible causes and consequences of accidents at chemically hazardous facilities in Nizhny Novgorod region. Teoriya i praktika sovremennoi nauki. 2019; (11): 257–60. https://elibrary.ru/uqolcx (in Russian)

23. Garibov R.B., Gribanova N.F., Khorzova L.I., Snarskii S.V., Bashirzade R.R. Risk analysis of accidents during the transportation of chemically hazardous substances by railway transport. In: Technosphere Safety, Reliability, Quality, Energy and Resource Saving. Proceedings of the 21st International Scientific and Practical Conference. Volume 1. Issue 21 [Tekhnosfernaya bezopasnost’, nadezhnost’, kachestvo, energo- i resursosberezhenie. Materialy 21-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Tom 1. Vypusk 21]. Rostov-na-Donu; 2019: 360–76. https://elibrary.ru/qcnpem (in Russian)

24. Yang D., Zheng Y., Peng K., Pan L., Zheng J., Xie B., et al. Characteristics and statistical analysis of large and above hazardous chemical accidents in China from 2000 to 2020. Int. J. Environ. Res. Public Health. 2022; 19(23): 15603. https://doi.org/10.3390/ijerph192315603

25. Sinicyn V.V., Tatarinov V.V., Prus Yu.V., Kirsanov A.A. Statistics of road transportation of dangerous goods and accidents. Tekhnologii tekhnosfernoi bezopasnosti. 2018; (4): 24–35. https://doi.org/10.25257/TTS.2018.4.80.24-35 https://elibrary.ru/vnbhzd (in Russian)

26. Brazhenko G.G., Gerasimov A.A. Providing first medical aid during a chemical disaster in Yaroslavl city, 1988. In: Actual Issues of Modern Medical Science and Healthcare: Collection of Articles of the VIII International Scientific and Practical Conference of Young Scientists and Students [Aktual’nye voprosy sovremennoĭ meditsinskoĭ nauki i zdravookhraneniya: sbornik statei VIII Mezhdunarodnoĭ nauchno-prakticheskoĭ konferentsii molodykh uchenykh i studentov]. Ekaterinburg; 2023: 1220–5. https://elibrary.ru/fgpogi (in Russian)

27. Gafarov E.R. Causes of leaks in main oil pipelines. In: Fundamental and Applied Scientific Research: Current Issues, Achievements and Innovations. Collection of Articles of the Winners of the II International Scientific and Practical Conference [Fundamental’nye i prikladnye nauchnye issledovaniya: aktual’nye voprosy, dostizheniya i innovatsii. Sbornik statei pobeditelei II Mezhdunarodnoi nauchno-prakticheskoi konferentsii]. Penza: Nauka i Prosveshchenie; 2016: 137–40. https://elibrary.ru/xgcrdd (in Russian)

28. Ramazanov R.R., Kantemirov I.F., Gulin D.A., Makhmudova I.F. Analysis of industrial pipeline defects and methods of their repair. Neftegazovoe delo. 2022; 20(2): 78–85. https://doi.org/10.17122/ngdelo-2022-2-78-85 https://elibrary.ru/oxauxx (in Russian)

29. Shaidullin I.N., Radostev R.V., Smelik A.A. Development of corrosion in pipelines based on initial defects. In: Energy Supply Technologies. Life Support Apparatus and Machines. Conference Proceedings [Tekhnologii energoobespecheniya Apparaty i mashiny zhizneobespecheniya. Sbornik statei konferentsii]. Anapa; 2020: 104–10. https://elibrary.ru/ddqfgl (in Russian)

30. Bazarbayev S.E. Overview of external detection methods oil leaks in pipelines. Mezhdunarodnyi nauchnyi zhurnal «Vestnik nauki». 2021; 2(6–1): 269–74. https://elibrary.ru/qxkhwj (in Russian)

31. Kochetova Zh.Yu., Shishkin A.V., Vnukova S.V., Tronin A.L. Software for modeling the spread of an ammonia cloud during pipeline depressurization. In: Physical Foundations of High Technologies: Materials of the All-Russian Scientific and Methodological Conference [Fizicheskie osnovy naukoemkikh tekhnologii. Materialy Vserossiiskoi nauchno-metodicheskoi konferentsii]. Voronezh; 2024: 56–62. https://doi.org/10.58168/PBST_56-62

32. Afonin D.N. Features of the organization and customs control of goods belonging to the category of dangerous goods transported by international traffic. Byulleten’ innovatsionnykh tekhnologii. 2019; 3(4): 5–13. https://elibrary.ru/dvezdi (in Russian)

33. Liu Z., Zhou J., Reniers G. Association analysis of accident factors in petrochemical storage tank farms. J. Loss Prev. Process Ind. 2023; 84: 105124. https://doi.org/10.1016/j.jlp.2023.105124

34. Kidam K., Hurme M. Analysis of equipment failures as contributors to chemical process accidents. Process Saf. Environ. Prot. 2013; 91(1–2): 61–78. https://doi.org/10.1016/j.psep.2012.02.001

35. Trávníček P., Kotek L., Junga P., Koutný T., Novotná J., Vítěz T. Prevention of accidents to storage tanks for liquid products used in agriculture. Process Saf. Environ. Prot. 2019; 128: 193–202. https://doi.org/10.1016/j.psep.2019.05.035

36. Zaitsev A., Tul’skaya S., Sklyarov K. Causes and consequences of the accident at the fuel and lubricants warehouse of TPP-3 in Norilsk. Gradostroitel’stvo Infrastruktura Kommunikatsii. 2021; (3): 38–42. https://elibrary.ru/jidfvr (in Russian)

37. Troshko K.A., Denisov P.V., Lavrova O.Yu., Loupian E.A., Medvedev A.A. Observation of the Ambarnaya river pollution resulting from the accident at the Norilsk thermal power plant no. 3 on May 29, 2020. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2020; 17(3): 267–74. https://doi.org/10.21046/2070-7401-2020-17-3-267-274 https://elibrary.ru/lfjxjw (in Russian)

38. Mishchenko E.V., Savitskaya T.V., Egorov A.F. Classification of chemicals and analysis of consequences of accidents during its storage using software, FLACS. Uspekhi v khimii i khimicheskoi tekhnologii. 2015; 29(8): 66–9. https://elibrary.ru/uybaib (in Russian)

39. Belykh D.S., Fomin A.I. Analysis of conditions for occurrence and development of accidents at a chemically hazardous facility (KAO “Azot”). In: Safety of Enterprises’ Life Activity in Industrially Developed Regions. Proceedings of the XIV International Scientific and Practical Conference [Bezopasnost’ zhiznedeyatel’nosti predpriyatii v promyshlenno razvitykh regionakh. Sbornik materialov XIV Mezhdunarodnoi nauchno-prakticheskoi konferentsii]. Kemerovo; 2021. https://elibrary.ru/snquhz (in Russian)

40. Chemical Production. Great Russian Encyclopedia 2004-2017. Available at: https://old.bigenc.ru/chemistry/text/4665977 (in Russian)

41. Li X., Chen C., Hong Y.D., Yang F.Q. Exploring hazardous chemical explosion accidents with association rules and Bayesian networks. Reliab. Eng. Syst. Saf. 2023; 233: 109099. https://doi.org/10.1016/j.ress.2023.109099

42. Avdotin V., Avdotina J., Benin A., Gromenko M., Kossoi A. The modern approach to the analysis of thermal dangers. Tekhnologii grazhdanskoi bezopasnosti. 2012; 9(2): 14–21. https://elibrary.ru/oydsqj (in Russian)

43. Mamleeva N.A. Industrial waste in Russia and its neutralization. In: Collection of Scientific Articles Following the International Scientific Forum "Science and Innovations – Modern Concepts" [Sbornik nauchnykh statei po itogam raboty Mezhdunarodnogo nauchnogo foruma "Nauka i innovatsii – sovremennye kontseptsii"]. Moscow: Infiniti; 2022: 79–89. https://elibrary.ru/fhajky (in Russian)

44. Mamleeva N.A. Thermal technologies for waste neutralization and disposal. In: Collection of Scientific Articles Following the International Scientific Forum "Science and Innovations – Modern Concepts" [Sbornik nauchnykh statei po itogam raboty Mezhdunarodnogo nauchnogo foruma "Nauka i innovatsii – sovremennye kontseptsii"]. Moscow: Infiniti; 2022: 69–78. https://elibrary.ru/zflpxi (in Russian)

45. Khasilov I., Mamatova F. Research on modern methods of utilization and recycling of chemical waste products. Universum: tekhnicheskie nauki. 2024; (6–3): 49–51. https://elibrary.ru/lphdze (in Russian)

46. Abdel-Shafy H.I., Ibrahim A.M., Al-Sulaiman A.M., Okasha R.A. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview. Ain Shams Eng. J. 2024; 15(1): 102293. https://doi.org/10.1016/j.asej.2023.102293

47. Gunarathne V., Phillips A.J., Zanoletti A., Rajapaksha A.U., Vithanage M., Di Maria F., et al. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. Sci. Total. Environ. 2024; 912: 169026. https://doi.org/10.1016/j.scitotenv.2023.169026

48. Weichenthal S., Van Rijswijk D., Kulka R., You H., Van Ryswyk K., Willey J., et al. The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit, Canada. Environ. Res. 2015; 142: 46–50. https://doi.org/10.1016/j.envres.2015.06.018

49. Ruokojärvi P., Ettala M., Rahkonen P., Tarhanen J., Ruuskanen J. Polychlorinated dibenzo-p-dioxins and -furans (PCDDs AND PCDFs) in municipal waste landfill fires. Chemosphere. 1995; 30(9): 1697–708. https://doi.org/10.1016/0045-6535(95)00055-D

50. Filatkin P.V., Vinogradova E.N., Tkacheva D.A., Balyanov G.A., Muratova N.M. Technical regulation of chemicals: development of hazard information system. Khimicheskaya bezopasnost‘. 2018; 2(2): 323–35. https://doi.org/10.25514/CHS.2018.2.14125 https://elibrary.ru/yszscl (in Russian)

51. Artemenko L., Kibaroolu D. Features of the organization of transportation of dangerous goods. Directions for optimtzing the formation of supply chains for liquid dangerous goods. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya D. Ekonomicheskie i yuridicheskie nauki. 2020; (13): 2–9. https://elibrary.ru/uveynl (in Russian)

52. Wu J., Lu Y., Shi S., Zhou R., Liu Y. Research on the prediction model of hazardous chemical road transportation accidents. J. Loss Prev. Process Ind. 2023; 84: 105103. https://doi.org/10.1016/j.jlp.2023.105103

53. Darbra R.M., Palacios A., Casal J. Domino effect in chemical accidents: main features and accident sequences. J. Hazard. Mater. 2010; 183(1–3): 565–73. https://doi.org/10.1016/j.jhazmat.2010.07.061

54. Kustova E.V. Ensuring industrial safety in chemical production. Nauchnye izvestiya. 2022; (27): 159–62. https://elibrary.ru/hnzflk (in Russian)

55. Zejnetdinova O.G., Danilov P.V., Kokurin A.K., Tyapochkin S.P. On the issue of ranking potentially dangerous objects by the degree of danger to the population and territories by risk indicators on the territory of the central federal district. Pozharnaya i avariinaya bezopasnost’. 2021; (1): 22–6. https://elibrary.ru/dahtyh (in Russian)


Review

For citations:


Lebed-Sharlevich Ya.I., Mamonov R.A., Savostikova O.N. Analysis of accident risk factors at chemically hazardous facilities (literature review). Hygiene and Sanitation. 2025;104(11):1418-1427. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-11-1418-1427. EDN: maqjzb

Views: 26


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)