Pathogenetic aspects and diagnostic methods of skin lesions in mining workers (literature review)
https://doi.org/10.47470/0016-9900-2025-104-11-1446-1451
EDN: iuewbf
Abstract
The most significant occupational hazards to which mining workers are exposed include the development of vibration-induced diseases, sensorineural hearing loss, radiculopathy, and occupational respiratory diseases. Disturbances in peripheral microcirculation, predominantly of a spastic nature, are frequently observed as a result of the peculiarities inherent in the labour process. These disturbances manifest as peripheral angiodystonic syndrome. The observed pathologies of microcirculation in this cohort of workers are associated with neurohumoral dysfunction, endothelial dysfunction, and alterations in the rheological properties of blood. The pertinence of examining microcirculatory tissue systems in miners is substantiated by the implication of microcirculatory alterations in diverse pathological processes at the premorbid stage. The complex of production factors has a damaging effect on the epidermis and dermis, which clinically can be manifested in the form of cyanosis and marbling of extremities, hyperhidrosis of palms and feet, pastosity of fingers and back of hands, xerosis, and keratosis of skin, and mycoses.
The purpose of the work is to undertake a comprehensive review and analysis of the extant literature pertaining to the mechanisms of development and methods of diagnosis of skin lesions in mining workers.
The present review article was created using the following bibliographic databases: Scopus, Web of Science, Medline, The Cochrane Library, EMBASE and RINC. The article presents the pathogenetic aspects of skin lesions in mining workers, along with recent studies by Russian and foreign authors in the field of endothelial damage markers and peculiarities of neurohumoral regulation disorders. In addition, the mechanisms of epidermis lesions in mining workers are discussed. This paper presents an overview of the extant literature on diagnostic methods for the early detection of lesions in the hypodermis, dermis, and epidermis. The methods covered include classical techniques, as well as more modern approaches. These encompass skin thermometry with cold load (cold test), capillaroscopy, thermography, plethysmography, ultrasound scanning, laser Doppler flowmetry, dermatoscopy, and methods of assessing physiological parameters of the skin. The results of the analysis of the literature are presented in this study.
The implementation of advanced diagnostic technologies and preventive measures is of paramount importance for enhancing the health status in miners and preventing occupational and comorbid diseases.
Contribution:
Yatsyna I.V. ‒ research concept and design, editing;
Astakhova I.V. ‒ collection and processing of material, writing the text.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Funding. The study had no sponsorship.
Received: May 23, 2025 / Accepted: November 3, 2025 / Published: December 19, 2025
About the Authors
Irina V. YatsynaRussian Federation
DSc (Medicine), professor, deputy director for scientific work, Federal Scientific Center of Hygiene named after F.F. Erisman, Mytishchi, 141014, Russian Federation
e-mail: yacyna.iv@fncg.ru
Irina V. Astakhova
Russian Federation
Dermatovenerologist, Federal Scientific Center of Hygiene named after F.F. Erisman, Mytishchi, 141014, Russian Federation
e-mail: astahova.iv@fncg.ru
References
1. Chebotarev A.G., Sementsova D.D. Comprehensive assessment of working conditions and occupational disease rates at mining and metallurgical enterprises. Gornaya promyshlennost’. 2021; (1): 114–9. https://doi.org/10.30686/1609-9192-2021-1-114-119 https://elibrary.ru/ubonqd (in Russian)
2. Goryaev D.V., Fadeev A.G., Shur P.Z., Fokin V.A., Zaitseva N.V. Hygienic assessment of working conditions and occupational incidence among mining workers in the arctic zone of the Norilsk industrial area. Analiz riska zdorov’yu. 2023; (2): 88–94. https://doi.org/10.21668/health.risk/2023.2.08 https://elibrary.ru/nliwot (in Russian)
3. Mu L., Sun A., Chen Y., Chen H., Li J., Linghu B., et al. Vascular response to the microcirculation in the fingertip by local vibration with varied amplitude. Front. Bioeng. Biotechnol. 2023; 11: 1197772. https://doi.org/10.3389/fbioe.2023.1197772
4. Ture H.Y., Lee N.Y., Kim N.R., Nam E.J. Raynaud’s phenomenon: a current update on pathogenesis, diagnostic workup, and treatment. Vasc. Specialist Int. 2024; 40: 26. https://doi.org/10.5758/vsi.240047
5. Spicknall K.E., Zirwas M.J., English J.C. 3rd. Clubbing: an update on diagnosis, differential diagnosis, pathophysiology, and clinical relevance. J. Am. Acad. Dermatol. 2005; 52(6): 1020–8. https://doi.org/10.1016/j.jaad.2005.01.006
6. Guerraty M., Bhargava A., Senarathna J., Mendelson A.A., Pathak A.P. Advances in translational imaging of the microcirculation. Microcirculation. 2021; 28(3): e12683. https://doi.org/10.1111/micc.12683
7. Berg A.V., Penina G.O. Clinical and functional characteristics of disabled people due to diseases of the peripheral nervous system at working age. Klinicheskaya meditsina. 2021; 99(2): 108–14. https://elibrary.ru/lwtzmv (in Russian)
8. Damayanti Putri N.S., Triesayuningtyas D.C., Firdausi H., Astindari Indranarum T., Mappamasing H. The correlation between comorbid factors and xerosis cutis in elderly. J. Pak. Assoc. Dermatol. 2023; 33(2): 507–12.
9. Yatsyna I.V. Analysis of mycosis morbidity in the conditions of occupational pathology hospital. Uspekhi meditsinskoi mikologii. 2018; (18): 373–5. https://elibrary.ru/xqdfut (in Russian)
10. Krupatkin A.I., Sidorov V.V. Functional Diagnostics of the State of Microcirculatory-Tissue Systems: Fluctuations, Information, Nonlinearity. Manual for Doctors [Funktsional’naya diagnostika sostoyaniya mikrotsirkulyatorno-tkanevykh sistem: Kolebaniya, informatsiya, nelineinost’. Rukovodstvo dlya vrachei]. Moscow: LENAND; 2022. (in Russian)
11. Cracowski J.L., Roustit M. Human skin microcirculation. Compr. Physiol. 2020; 10(3): 1105–54. https://doi.org/10.1002/cphy.c190008
12. Kan S.L., Bondarev O.I., Kosovskikh A.A., Lukashev K.V., Zoloeva O.S., Ekimovskikh A.V., et al. Compensatory-adaptive mechanisms of changes in the endothelial system in miners of Kuzbass (clinical and morphological aspects). Meditsina v Kuzbasse. 2022; 21(3): 9–17. https://doi.org/10.24412/2687-0053-2022-3-9-18 https://elibrary.ru/rfnofo (in Russian)
13. Yekimovskikh A.V., Dantsiger D.G., Churlyaev Y.A., Yepifantseva N.N., Kheringson L.G., Zoloeva O.S., et al. Contents of markers of dysfunction of vascular endothelium in miners. Politravma. 2012; (1): 59–64. https://elibrary.ru/oxdjeb (in Russian)
14. Noël C., Settembre N. Near-wall hemodynamic parameters of finger arteries altered by hand-transmitted vibration. Comput. Biol. Med. 2024; 168: 107709. https://doi.org/10.1016/j.compbiomed.2023.107709
15. Yamshchikova A.V., Fleishman A.N., Shumeiko N.I., Gidayatova M.O. The valuation of microcirculatory and metabolic disorders in the patients with vibration disease. Sibirskii meditsinskii zhurnal (Irkutsk). 2017; 149(2): 27–30. https://elibrary.ru/ztijfn (in Russian)
16. Nikolenko V.Yu., Lastkova N.D. From local vibration to vibration disease. Mezhdunarodnyi nevrologicheskii zhurnal. 2011; (1): 131–9. https://elibrary.ru/nqynkx (in Russian)
17. Kostjuk I.F., Kapoustnik V.A. Role of intracellular calcium metabolism in vasospasm formation during vibration disease. Meditsina truda i promyshlennaya ekologiya. 2004; (7): 14–7. https://elibrary.ru/owbnwr (in Russian)
18. Vihlborg P., Graff P., Hagenbjörk A., Hadrévi J., Bryngelsson I.L., Eriksson K. Serum metabolites in hand-arm vibration exposed workers. J. Occup. Environ. Med. 2020; 62(7): 460–5. https://doi.org/10.1097/JOM.0000000000001864
19. Augustin M., Wilsmann-Theis D., Körber A., Kerscher M., Itschert G., Dippel M., et al. Positionspapier: Diagnostik und Therapie der Xerosis cutis. J. Dtsch. Dermatol. Ges. 2018; 16 (Suppl. 4): 3–35. https://doi.org/10.1111/ddg.13580 (in Deutsch)
20. Lechner A., Akdeniz M., Tomova-Simitchieva T., Bobbert T., Moga A., Lachmann N., et al. Comparing skin characteristics and molecular markers of xerotic foot skin between diabetic and non-diabetic subjects: An exploratory study. J. Tissue Viability. 2019; 28(4): 200–9. https://doi.org/10.1016/j.jtv.2019.09.004
21. Augustin M., Kirsten N., Körber A., Wilsmann-Theis D., Itschert G., Staubach-Renz P., et al. Prevalence, predictors and comorbidity of dry skin in the general population. J. Eur. Acad. Dermatol. Venereol. 2019; 33(1): 147–50. https://doi.org/10.1111/jdv.15157
22. Yusupova L.A., Garaeva Z.Sh., Yunusova E.I., Mavlyutova G.I., Galimova A.R. Keratodermia. Lechashchii vrach. 2021; (11): 18–22. https://doi.org/10.51793/OS.2021.24.11.003 https://elibrary.ru/nxzzpj (in Russian)
23. Azovskova T.A., Lavrent’eva N.E., Vakurova N.V. Actual issues of diagnostics of angiodystonic disorders of vibration genesis. RMZh. Meditsinskoe obozrenie. 2015; 23(2): 109–12. https://elibrary.ru/zhgcnv (in Russian)
24. Berezhansky P.V., Yushina T.I., Gutyrchik T.A., Malakhov A.B., Shapiev A.N., Gutyrchik N.A. Capillaroscopy of the nail bed. Praktika pediatra. 2023; (1): 32–8. https://elibrary.ru/tjztmv (in Russian)
25. Vlasova T.I., Vlasova T.D. Current methods for microvascular blood flow research. Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya. 2024; 23(4): 5–21. https://elibrary.ru/offbfb (in Russian)
26. Lapko I.V., Zheglova A.V., Klimkina K.V., Bogatyreva I.A. Neurohumoral regulation under exposure to vibration and physical overloads. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(10): 1200–5. https://doi.org/10.47470/0016-9900-2022-101-10-1200-1205 https://elibrary.ru/nzwhqt (in Russian)
27. Alian A.A., Shelley K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014; 28(4): 395–406. https://doi.org/10. 1016/j.bpa.2014.08.006
28. Aghabaglou F., Ainechi A., Abramson H., Curry E., Kaovasia T.P., Kamal S., et al. Ultrasound monitoring of microcirculation: An original study from the laboratory bench to the clinic. Microcirculation. 2022; 29(6–7): e12770. https://doi.org/10.1111/micc.12770
29. Luck J.C., Kunselman A.R., Herr M.D., Blaha C.A., Sinoway L.I., Cui J. Multiple laser doppler flowmetry probes increase the reproducibility of skin blood flow measurements. Front. Physiol. 2022; 13: 876633. https://doi.org/10.3389/fphys.2022.876633
30. Guseynov N.A.O., Ivashkevich S.G., Bopkhoev S.V., Stomatov D.V., Boyko E.M., Noeerazlighi M.A. Methods for experimental monitoring of tissue vascularization. Meditsinskii alfavit. 2022; (34): 65–72. https://elibrary.ru/kijieg (in Russian)
31. Beschastnov V.V., Ryabkov M.G., Pavlenko I.V., Bagryantsev M.V., Dezortsev I.L., Kichin V.V., et al. Current methods for the assessment of oxygen status and biotissue microcirculation condition: diffuse optical spectroscopy (review). Sovremennye tekhnologii v meditsine. 2018; 10(4): 183–95. https://doi.org/10.17691/stm2018.10.4.22 https://elibrary.ru/fhthqo (in Russian)
32. Lupi O., Semenovitch I., Treu C., Bouskela E. Orthogonal polarization technique in the assessment of human skin microcirculation. Int. J. Dermatol. 2008; 47(5): 425–31. https://doi.org/10.1111/j.1365- 4632.2008.03694.x
33. Ruini C., Schuh S., Sattler E., Welzel J. Line-field confocal optical coherence tomography-Practical applications in dermatology and comparison with established imaging methods. Skin Res. Technol. 2021; 27(3): 340–52. https://doi.org/10.1111/srt.12949
34. Bouma B.E., de Boer J.F., Huang D., Jang I.K., Yonetsu T., Leggett C.L., et al. Optical coherence tomography. Nat. Rev. Methods Primers. 2022; 2: 79. https://doi.org/10.1038/s43586-022-00162-2
35. Nwaneshiudu A., Kuschal C., Sakamoto F.H., Anderson R.R., Schwarzenberger K., Young R.C. Introduction to confocal microscopy. J. Invest. Dermatol. 2012; 132(12): e3. https://doi.org/10.1038/jid.2012.429
36. Hu S.C., Lin C.L., Yu H.S. Dermoscopic assessment of xerosis severity, pigmentation pattern and vascular morphology in subjects with physiological aging and photoaging. Eur. J. Dermatol. 2019; 29(3): 274–80. https://doi.org/10.1684/ejd.2019.3555
37. Rezaikin A.V., Kubanova A.A., Rezaikina A.V. Non-invasive skin examination methods. Vestnik dermatologii i venerologii. 2009; (6): 28–32. https://elibrary.ru/kzvysv (in Russian)
38. Potekaev N.N., Frigo N.V., Novozhilova O.L., Kruglova L.S. Modern diagnostic techniques in dermatology (clinical lecture). Klinicheskaya dermatologiya i venerologiya. 2018; 17(1): 104–13. https://doi.org/10.17116/klinderma2018171104-113 https://elibrary.ru/yurdqg (in Russian)
39. Zheglova A.V. Improving the methodology for assessing occupational risk in workers under the influence of physical factors. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(9): 975–9. https://doi.org/10.47470/0016-9900-2021-100-9-975-979 https://elibrary.ru/qdcbig (in Russian)
40. Bodienkova G.M., Boklazhenko E.V. Immunochemical markers of effect under exposure to risk factors causing vibration disease of different etiogenesis: comparative assessment. Analiz riska zdorov’yu. 2023; (2): 149–54. https://doi.org/10.21668/health.risk/2023.2.14 https://elibrary.ru/imbtyx (in Russian)
41. Vihlborg P., Lundberg O., Pettersson-Pablo P., Johansson N., Bryngelsson I.L., Stjernbrandt A., et al. Blood biomarkers for occupational hand-arm vibration exposure. Toxicol. Ind. Health. 2024; 40(8): 432–40. https://doi.org/10.1177/07482337241253996
42. Tekavec E., Nilsson T., Dahlin L.B., Huynh E., Axmon A., Nordander C., et al. Serum biomarkers in patients with hand-arm vibration injury and in controls. Sci. Rep. 2024; 14(1): 2719. https://doi.org/10.1038/s41598-024-52782-1
Review
For citations:
Yatsyna I.V., Astakhova I.V. Pathogenetic aspects and diagnostic methods of skin lesions in mining workers (literature review). Hygiene and Sanitation. 2025;104(11):1446-1451. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-11-1446-1451. EDN: iuewbf
JATS XML

































