Preview

Hygiene and Sanitation

Advanced search

Region of residence as the most important factor influencing the formation of the human intestinal microbiome (literature review)

https://doi.org/10.47470/0016-9900-2025-104-12-1611-1617

EDN: zrbtzv

Abstract

The gastrointestinal tract (GIT) microbiome is known to significantly impact on human health and be involved in many metabolic processes. The composition of the intestinal microbiota is variable and depends on both endogenous and exogenous factors. Regional climatic and geographical factors influencing the composition of the intestinal microbiota have not been characterized for the population of the Russian Federation (RF). 39% of Russia’s area is in the taiga zone, 13% in the arctic desert, tundra, and forest-tundra zones, 6% in the mixed forest zone, 8% in the forest-steppe and deciduous forest zone, 5% in the steppe zone, 1% in the semi-desert zone, and 2% in the desert zone. Each climate zone is characterized by unique climatic conditions, so when assessing the composition of the intestinal microbiota of Russian residents, it is crucial to pay attention to the regional aspect as one of the key factors influencing on changes in the composition of the human microbiome. In addition to climatic and geographical factors, there are also cultural and socio-economic factors, which is confirmed by the results of many global population studies.

The aim of the study. Systematization of key exogenous factors shaping the gut microbiome: geographic features, urbanization level, climate conditions, and ethnic and national dietary patterns. Experts consider these factors when determining the relative norm for the composition of the human gut microbiota, diagnosing dysbiosis in both indigenous and non-native populations.

Material and Methods. This review is based on scientific studies published over the past ten years and presented in the PubMed, Google Scholar, Scopus, Web of Science, and eLIBRARY.RU databases.

Conclusion. The review reveals the influence of region of residence on the intestinal microbiota parameters of relatively healthy individuals living in various climatic zones and areas with different levels of urbanization, which can be used to determine the normal flora for residents.

Contribution:
Nekrasova A.I. – text editing, collection, analysis, processing of materials, systematization and generalization of literature data;
Kalashnikova I.G. – collection of material and processing of literature data, text editing;
Makarov V.V. – text editing, concept and design of the review and analytical research;
Zhernov Yu.V. – text editing, concept and design of the review and analytical study.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. The study had no sponsorship.

Received: October 2, 2025 / Revised: November 18, 2025 / Accepted: November 19, 2025 / Published: January 15, 2026

About the Authors

Alexandra I. Nekrasova
Centre for Strategic Planning of the Federal medical and biological agency
Россия

A leading category analyst, Department of medical genomics of the Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: Akinshina@cspfmba.ru 



Irina G. Kalashnikova
Centre for Strategic Planning of the Federal medical and biological agency
Россия

A category 2 analyst, Department of medical genomics of the Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: IGKalashnikova@cspfmba.ru



Valentin V. Makarov
Centre for Strategic Planning of the Federal medical and biological agency
Россия

PhD (Biology), deputy director for scientific and experimental work, Centre for Strategic Planning of the Federal medical and biological agency, Moscow, 119121, Russian Federation

e-mail: Makarov@cspfmba.ru



Yuri V. Zhernov
Centre for Strategic Planning of the Federal medical and biological agency
Россия

DSс (Medicine), associate professor, director, Moscow, 119121, Russian Federation

e-mail: YZhernov@cspfmba.ru



References

1. Sarkar A., Yoo J.Y., Valeria Ozorio Dutra S., Morgan K.H., Groer M. The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 2021; 10(3): 459. https://doi.org/10.3390/jcm10030459

2. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486(7402): 222–7. https://doi.org/10.1038/nature11053

3. Mobeen F., Sharma V., Tulika P. Enterotype variations of the healthy human gut microbiome in different geographical regions. Bioinformation. 2018; 14(9): 560–73. https://doi.org/10.6026/97320630014560

4. Lan D., Ji W., Lin B., Chen Y., Huang C., Xiong X., et al. Correlations between gut microbiota community structures of Tibetans and geography. Sci. Rep. 2017; 7(1): 16982. https://doi.org/10.1038/s41598-017-17194-4

5. Karyshev M.Yu. Comparative socio-economic analysis of the Far North and equated areas and the rest of the Russian Federation. Uchet i statistika. 2025; 22(1): 20–8. https://doi.org/10.54220/1994-0874.2025.71.46.001 (in Russian)

6. https://old.bigenc.ru/geography/text/3543266

7. Tyakht A.V., Alexeev D.G., Popenko A.S., Kostryukova E.S., Govorun V.M. Rural and urban microbiota: To be or not to be? Gut Microbes. 2014; 5(3): 351–6. https://doi.org/10.4161/gmic.28685

8. Tyakht A.V., Kostryukova E.S., Popenko A.S., Belenikin M.S., Pavlenko A.V., Larin A.K., et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 2013; 4: 2469. https://doi.org/10.1038/ncomms3469

9. Nekrasova A.I., Kalashnikova I.G., Korobeynikova A.V., Ashniev G.A., Bobrova M.M., Bakoev S.Y., et al. Characteristics of the gut microbiota composition of the Arctic Zone residents in the Far Eastern region. Biomedicines. 2024; 12(11): 2472. https://doi.org/10.3390/biomedicines12112472

10. Karlsson F.H., Nookaew I., Nielsen J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput. Biol. 2014; 10(7): e1003706. https://doi.org/10.1371/journal.pcbi.1003706

11. Kemppainen K.M., Ardissone A.N., Davis-Richardson A.G., Fagen J.R., Gano K.A., León-Novelo L.G., et al. Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care. 2015; 38(2): 329–32. https://doi.org/10.2337/dc14-0850

12. Fallani M., Young D., Scott J., Norin E., Amarri S., Adam R., et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 2010; 51(1): 77–84. https://doi.org/10.1097/MPG.0b013e3181d1b11e

13. Nishijima S., Suda W., Oshima K., Kim S.W., Hirose Y., Morita H., et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016; 23(2): 125–33. https://doi.org/10.1093/dnares/dsw002

14. Nam Y.D., Jung M.J., Roh S.W., Kim M.S., Bae J.W. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One. 2011; 6(7): e22109. https://doi.org/10.1371/journal.pone.0022109

15. Abed J.Y., Godon T., Mehdaoui F., Plante P.L., Boissinot M., Bergeron M.G., et al. Gut metagenome profile of the Nunavik Inuit youth is distinct from industrial and non-industrial counterparts. Commun. Biol. 2022; 5(1): 1415. https://doi.org/10.1038/s42003-022-04372-y

16. Dubois G., Girard C., Lapointe F.J., Shapiro B.J. The Inuit gut microbiome is dynamic over time and shaped by traditional foods. Microbiome. 2017; 5(1): 151. https://doi.org/10.1186/s40168-017-0370-7

17. Copeland J.K., Chao G., Vanderhout S., Acton E., Wang P.W., Benchimol E.I., et al. The impact of migration on the gut metagenome of South Asian Canadians. Gut Microbes. 2021; 13(1): 1–29. https://doi.org/10.1080/19490976.2021.1902705

18. Mobegi F.M., Leong L.E., Thompson F., Taylor S.M., Harriss L.R., Choo J.M., et al. Intestinal microbiology shapes population health impacts of diet and lifestyle risk exposures in Torres Strait Islander communities. Elife. 2020; 9: e58407. https://doi.org/10.7554/eLife.58407

19. Harrison L.C., Allnutt T.R., Hanieh S., Roth-Schulze A.J., Ngui K.M., Stone N.L., et al. Indigenous infants in remote Australia retain an ancestral gut microbiome despite encroaching Westernization. Nat. Commun. 2025; 16(1): 9904. https://doi.org/10.1038/s41467-025-65758-0

20. Suzuki T.A., Worobey M. Geographical variation of human gut microbial composition. Biol. Lett. 2014; 10(2): 20131037. https://doi.org/10.1098/rsbl.2013.1037

21. Ley R.E., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005; 102(31): 11070–5. https://doi.org/10.1073/pnas.0504978102

22. Rehman A., Rausch P., Wang J., Skieceviciene J., Kiudelis G., Bhagalia K., et al. Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut. 2016; 65(2): 238–48. https://doi.org/10.1136/gutjnl-2014-308341

23. De Filippo C., Di Paola M., Ramazzotti M., Albanese D., Pieraccini G., Banci E., et al. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front. Microbiol. 2017; 8: 1979. https://doi.org/10.3389/fmicb.2017.01979

24. Martínez I., Stegen J.C., Maldonado-Gómez M.X., Eren A.M., Siba P.M., Greenhill A.R., et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 2015; 11(4): 527–38. https://doi.org/10.1016/j.celrep.2015.03.049

25. Girard C., Tromas N., Amyot M., Shapiro B.J. Gut microbiome of the Canadian Arctic inuit. mSphere. 2017; 2(1): e00297–16. https://doi.org/10.1128/mSphere.00297-16

26. Messmer M.N., Kokolus K.M., Eng J.W., Abrams S.I., Repasky E.A. Mild cold-stress depresses immune responses: Implications for cancer models involving laboratory mice. Bioessays. 2014; 36(9): 884–91. https://doi.org/10.1002/bies.201400066

27. Wen C., Wei S., Zong X., Wang Y., Jin M. Microbiota-gut-brain axis and nutritional strategy under heat stress. Anim. Nutr. 2021; 7(4): 1329–36. https://doi.org/10.1016/j.aninu.2021.09.008

28. Aleman R.S., Moncada M., Aryana K.J. Leaky gut and the ingredients that help treat it: a review. Molecules. 2023; 28(2): 619. https://doi.org/10.3390/molecules28020619

29. Cao Y., Liu Y., Dong Q., Wang T., Niu C. Alterations in the gut microbiome and metabolic profile in rats acclimated to high environmental temperature. Microb. Biotechnol. 2022; 15(1): 276–88. https://doi.org/10.1111/1751-7915.13772

30. Mlangeni T., Jian C., Häkkinen H.K., de Vos W.M., Salonen A., Kantele A. Travel to the tropics: Impact on gut microbiota. Travel Med. Infect. Dis. 2025; 66: 102869. https://doi.org/10.1016/j.tmaid.2025.102869

31. Karl J.P., Margolis L.M., Madslien E.H., Murphy N.E., Castellani J.W., Gundersen Y., et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 2017; 312(6): G559–71. https://doi.org/10.1152/ajpgi.00066.2017

32. Liu T., Guo Y., Lu C., Cai C., Gao P., Cao G., et al. Effect of different pig fecal microbiota transplantation on mice intestinal function and microbiota changes during cold exposure. Front. Vet. Sci. 2022; 9: 805815. https://doi.org/10.3389/fvets.2022.805815

33. Castellani J.W., Young A.J. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton. Neurosci. 2016; 196: 63–74. https://doi.org/10.1016/j.autneu.2016.02.009

34. Toloza E.M., Lam M., Diamond J. Nutrient extraction by cold-exposed mice: a test of digestive safety margins. Am. J. Physiol. 1991; 261(4 Pt. 1): G608–20. https://doi.org/10.1152/ajpgi.1991.261.4.G608

35. Chevalier C., Stojanović O., Colin D.J., Suarez-Zamorano N., Tarallo V., Veyrat-Durebex C., et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015; 163(6): 1360–74. https://doi.org/10.1016/j.cell.2015.11.004

36. Ziętak M., Kovatcheva-Datchary P., Markiewicz L.H., Ståhlman M., Kozak L.P., Bäckhed F. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 2016; 23(6): 1216–23. https://doi.org/10.1016/j.cmet.2016.05.001

37. Salikova S.P., Vlasov A.A., Grinevich V.B. Human adaptation to the conditions of the far north: emphasis on the correction of the microbial-tissue complex of the gastrointestinal tract. Ekologiya cheloveka. 2021; 28(2): 4–12. https://doi.org/10.33396/1728-0869-2021-2-4-12 (in Russian)

38. Ivanova T.N. Microbiological features of intestinal dysbiosis in residents of the Far North: Diss. St. Petersburg; 2008. https://elibrary.ru/nqobmx (in Russian)

39. Akhremenko Ya.A. Mechanisms of Violations of colonization resistance in children in the conditions of the North: Diss. Yakutsk; 2004. https://elibrary.ru/niczsn (in Russian)

40. Kuznetsova V., Tyakht A., Akhmadishina L., Odintsova V., Klimenko N., Kostryukova E., et al. Gut microbiome signature of Viliuisk encephalomyelitis in Yakuts includes an increase in microbes linked to lean body mass and eating behaviour. Orphanet J. Rare Dis. 2020; 15(1): 327. https://doi.org/10.1186/s13023-020-01612-4


Review

For citations:


Nekrasova A.I., Kalashnikova I.G., Makarov V.V., Zhernov Yu.V. Region of residence as the most important factor influencing the formation of the human intestinal microbiome (literature review). Hygiene and Sanitation. 2025;104(12):1611-1617. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-12-1611-1617. EDN: zrbtzv

Views: 10

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)