Preview

Гигиена и санитария

Расширенный поиск

Полиморфные локусы CYPs и GSTs генов у лиц, подвергшихся хроническому воздействию паров металлической ртути

https://doi.org/10.47470/0016-9900-2018-97-10-921-924

Полный текст:

Аннотация

Введение. В работе исследовали ассоциацию полиморфных локусов генов системы биотрансформации ксенобиотиков с формированием хронической ртутной интоксикации (ХРИ) в когорте бывших работников производства каустика, подвергшихся хроническому воздействию паров ртути. 

Материал и методы. Полиморфные варианты CYP1A1 (+462Ile/Val, rs1048943), CYP1A2*F (-163C/A, rs762551), CYP2E1 (+1053C/T, rs2031920), GSTM1 и GSTT1 генов изучены у 120 мужчин, распределённых в две группы: группа 1 (n = 46) – стажированные работники, контактировавшие с ртутью и не имеющие диагноза ХРИ, группа 2 (n = 74) – больные в отдалённом периоде ХРИ. Использовали точный критерий Фишера (двусторонний тест) для оценки различий между группами по частотам аллелей и генотипов, а также логистическую регрессию для обнаружения ассоциаций изученных полиморфных локусов с ХРИ для четырёх видов генетических моделей. 

Результаты. Выявлена повышенная частота (p = 0,01) носительства IleVal гетерозиготы в группе стажированных работников относительно пациентов с диагнозом ХРИ, а также обратная ассоциация IleVal-CYP1A1 (+462Ile/Val) генотипа с развитием ХРИ (OR = 0,10, 95 % CI 0,02-0,48, p < 0,001) на фоне отсутствия в когорте носителей ValVal гомозиготы. Такие данные указывают на то, что IleVal генотип является маркером устойчивости к формированию заболевания. 

Обсуждение. Результаты обсуждаются в контексте гипотезы о способности CYP3A генов модифицировать ответ на воздействие метилртути на раннем этапе развития нервной системы. 

Заключение. Полученные результаты свидетельствуют о возможной заинтересованности полиморфного локуса CYP1A1 (+462Ile/Val) в механизмах формирования и прогрессирования ХРИ, что будет способствовать выработке критериев оценки индивидуальной чувствительности организма и риска развития этого заболевания.

Об авторе

Юрий Ильич Черняк
ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»
Россия

Доктор биол. наук, вед. науч. сотр. лаб. иммуно-биохимических и молекулярно-генетических исследований ФГБНУ «Восточно-Сибирский институт медико-экологических исследований».

e-mail: yuri_chernyak@hotmail.com



Список литературы

1. Лахман О.Л., Катаманова Е.В., Константинова Т.Н., Шевченко О.И., Мещерягин В.А., Андреева О.И. и др. Современные подходы к классификации профессиональной интоксикации ртутью. Экол. чел. 2009; 12: 22-7.

2. Тиунов Л.А. Механизм естественной детоксикации и антиоксидантной защиты. Вестн. РАМН. 1995; 3: 9-13.

3. Lewis D.F.V. Guide to cytochromes P450 structure and function. London and New York: Taylor & Francis: 2001.

4. Stavrinou P., Mavrogiorgou M.C., Polyzoidis K., Kreft-Kerekes V., Timmer M., Marselos M. et al. Expression profile of genes related to drug metabolism in human brain tumors. PLoS One. 2015; 10(11): e0143285. https://doi.org/10.1371/journal.pone.0143285

5. Dutheil F., Beaune P., Loriot M.A. Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie. 2008; 90 (3): 426-36. https://doi.org/10.1016/j.biochi.2007.10.007

6. Ferguson C.S., Tyndale R.F. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011; 32(12): 708-14. https://doi.org/10.1016/j.tips.2011.08.005

7. Ghosh C., Hossain M., Solanki J., Dadas A., Marchi N., Janigro D. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today. 2016; 21 (10): 1609-19. https://doi.org/10.1016/j.drudis.2016.06.004

8. Ravindranath V., Strobel H.W. Cytochrome P450-mediated metabolism in brain: functional roles and their implications. Expert Opin Drug Metab Toxicol. 2013; 9 (5): 551-8. https://doi.org/10.1517/17425255.2013.759208

9. Chernyak Yu.I., Itskovich V.B., D’yakovich O.A., Kolesnikov S.I. Role of cytochrome P450-dependent monooxygenases and polymorphic variants of GSTT1 and GSTM1 genes in the formation of brain lesions in individuals chronically exposed to mercury. Bull Exp Biol Med. 2013; 156 (1): 15-18. https://doi.org/10.1007/s10517-013-2266-2

10. Nakahama T., Inouye Y., Fukuhara M. Comparative study on in vitro inhibitory effects of heavy metals on rabbit drug-metabolizing enzymes. J Health Science. 2001; 47(1): 14-20.

11. Llop S., Ballester F., Broberg K. Effect of gene-mercury interactions on mercury toxicokinetics and neurotoxicity. Curr Environ Health Rep. 2015; 2(2): 179-94. https://doi.org/10.1007/s40572-015-0047-y

12. Custodio H.M., Harari R., Gerhardsson L., Skerfving S., Broberg K. Genetic influences on the retention of inorganic mercury. Arch Environ Occup Health. 2005; 60 (1): 17-23. https://doi.org/10.3200/AEOH.60.1.17-23

13. Gundacker C., Komarnicki G., Jagiello P., Gencikova A., Dahmen N., Wittmann K.J. et al. Glutathione-S-transferase polymorphism, metallothionein expression, and mercury levels among students in Austria. Sci Total Environ. 2007; 385 (1-3): 37-47. https://doi.org/10.1016/j.scitotenv.2007.07.033

14. Chernyak Yu.I., Merinova A.P. HSP70 (HSPA1) polymorphisms in former workers with chronic mercury vapor exposure. Int J Occup Med Environ Health. 2017; 30 (1): 77-85. https://doi.org/10.13075/ijomeh.1896.00732

15. Григорьева С.А., Никитина В.А., Косякова Н.В., Кириллов А.В., Аксенова М.Г., Сидорова И.Е. и др. Частота полиморфизмов генов ферментов биотрансформации ксенобиотиков CYP1A1, GSTM1 и GSTT1 у жителей г. Москвы. Мед. генетика. 2007; 6 (3); 38-42

16. Pirmohamed M., Kitteringham N.R., Quest L.J., Allott R.L., Green V.J., Gilmore I.T. et al. Genetic polymorphism of cytochrome P4502E1 and risk of alcoholic liver disease in Caucasians. Pharmacogenetics. 1995; 5 (6): 351-7.

17. Chida M., Yokoi T, Fukui T, Kinoshita M., Yokota J., Kamataki T. Detection of three genetic polymorphisms in the 5′-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res. 1999; 90: 899-902. https://doi.org/10.1111/j.1349-7006.1999.tb00832.x

18. Ambrosone C.B., Sweeney C., Coles B.F., Thompson P.A., McClure G.Y., Korourian S. et al. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res. 2001; 61 (19): 7130-5.

19. Solé X., Guinó E., Valls J., Iniesta R., Moreno V. SNPStats: A web tool for the analysis of association studies. Bioinformatics. 2006; 22: 1928-9. https://doi.org/10.1093/bioinformatics/btl268

20. Toselli F., Dodd P.R., Gillam E.M. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab Rev. 2016; 48(3): 379-404. https://doi.org/10.1080/03602532.2016.1221960

21. Concise international chemical assessment document 50. Elemental mercury and inorganic mercury compounds: human health aspects. WHO, Geneva, Switzerland, 2003. URL: http://www.who.int/ipcs/publications/cicad/en/cicad50.pdf (accessed: 26.03.2018).

22. Rand M.D., Lowe J.A., Mahapatra C.T. Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development. Toxicology. 2012; 300(1-2): 75-82. https://doi.org/10.1016/j.tox.2012.06.001

23. Llop S., Tran V., Ballester F., Barbone F., Sofianou-Katsoulis A., Sunyer J. et al. CYP3A genes and the association between prenatal methylmercury exposure and neurodevelopment. Environ Int. 2017; 105: 34-42. https://doi.org/10.1016/j.envint.2017.04.013

24. Gundacker C., Gencik M., Hengstschläger M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutat Res. 2010; 705(2): 130-40. https://doi.org/10.1016/j.mrrev.2010.06.003

25. Andreoli V., Sprovieri F. Genetic aspects of susceptibility to mercury toxicity: An overview. Int J Environ Res Public Health. 2017; 14(1): 25 p. https://doi.org/10.3390/ijerph14010093


Рецензия

Для цитирования:


Черняк Ю.И. Полиморфные локусы CYPs и GSTs генов у лиц, подвергшихся хроническому воздействию паров металлической ртути. Гигиена и санитария. 2018;97(10):921-924. https://doi.org/10.47470/0016-9900-2018-97-10-921-924

For citation:


Chernyak Yu.I. Polymorphic CYPs and GSTs genes’ loci in workers exposed to chronic mercury vapor exposure. Hygiene and Sanitation. 2018;97(10):921-924. (In Russ.) https://doi.org/10.47470/0016-9900-2018-97-10-921-924

Просмотров: 49


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)