Preview

Hygiene and Sanitation

Advanced search

Influence of atmospheric pressure on formation of arterial hypertension: pathogenetic mechanisms and indicators (literature review)

https://doi.org/10.47470/0016-9900-2025-104-12-1656-1662

EDN: ulkcyp

Abstract

Provision of sanitary-epidemiological welfare for the country population largely depends on control for non-communicable diseases; among them, a substantial contribution belongs to arterial hypertension (AH) due to both its high prevalence and considerable proportion in the morbidity and mortality structure. Apart from the well-known risk factors, considerable influence on formation of AH can be exerted by changes in atmospheric pressure. It is advisable to identify key pathogenetic mechanisms of formation of AH upon changes in atmospheric pressure and indicators that describe them.This review covers materials presented in Russian and foreign publications, which are indexed in PubMed, Scopus, Google Scholar, CyberLeninka, and Elibrary.ru in 2010-2025 and focus on effects produced by atmospheric pressure on a rise in blood pressure (fifty five reports). The accomplished review has allowed establishing blood pressure to grow upon atmospheric pressure differences due to activation of the sympathoadrenal system (SAS) and renin-angiotensin-aldosterone system (RAAS) with a subsequent growth in cardiac output and heart rate (HR). When atmospheric pressure goes down, a decline in the vascular tone and partial oxygen density (ρO2) are the initial segments; when it grows, arterial walls swell and spastic vasoconstriction occurs. Indicators for further profound analysis may include heart rate, cardiac output, blood pressure, biochemical indicators that describe SAS and RAAS activation, functional indicators that describe the state of the autonomic nervous system, ultrasound indicators to describe morphofunctional state of the heart and vessels, as well as hemoglobin oxygen saturation (SpO2) under declining atmospheric pressure. Our results can be used in hygienic descriptions of effects produced by changes in atmospheric pressure on formation of AH within social and hygienic monitoring as well as for implementing branch activity plans with their focus on adaption to climate change within providing sanitary-epidemiological welfare of the country population.

Contributions:
Khasanova А.А. – study concept and design, collection and analysis of literature data, writing, and editing;
Zaitseva N.V., Shur P.Z.
– research design, editing;
Ustinova О.Yu. – collecting and analyzing literature data, and writing text.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Funding. The study had no sponsorship.

Received: September 22, 2025 / Accepted: December 2, 2025 / Published: January 15, 2026

About the Authors

Anna A. Khasanova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

Researcher, Health risk analysis department, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: khasanova@fcrisk.ru



Pavel Z. Shur
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

DSc (Medicine), secretary of the Academic council, chief researcher, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: shur@fcrisk.ru



Olga Yu. Ustinova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University
Россия

DSc (Medicine), deputy director responsible for clinical work, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation; Perm State National Research University, Perm, 614000, Russian Federation

e-mail: ustinova@fcrisk.ru



Nina V. Zaitseva
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

DSc (Medicine), professor, academician of the RAS, scientific director, Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: znv@fcrisk.ru



References

1. Dorogovtsev V.N., Simonenko V.B. Preclinical predictors of arterial hypertension. Klinicheskaya meditsina. 2021; 99(2): 91–7. https://doi.org/10.30629/0023-2149-2021-99-2-91-97 https://elibrary.ru/sbzrwx (in Russian)

2. van der Ende M.Y., Hartman M.H., Hagemeijer Y., Meems L.M., de Vries H.S., Stolk R.P., et al. The LifeLines Cohort Study: Prevalence and treatment of cardiovascular disease and risk factors. Int. J. Cardiol. 2017; 228: 495–500. https://doi.org/10.1016/j.ijcard.2016.11.061

3. Bichurin D.R., Atmaikina O.V., Cherepanova O.A. Cardiovascular diseases. A regional aspect. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal. 2023; (8): 116. https://doi.org/10.23670/IRJ.2023.134.103 https://elibrary.ru/jmqbso (in Russian)

4. Puzin S.N., Yakovlev A.A., Lyalina I.V., Shurgaya M.A., Sharikadze D.T. Primary disability of the adult population due to diseases of the circulatory system. Siberian Journal of Life Sciences and Agriculture. 2021; 13(5): 205–25. https://doi.org/10.12731/2658-6649-2021-13-5-205-225 https://elibrary.ru/kaclca (in Russian)

5. Townsend N., Wilson L., Bhatnagar P., Wickramasinghe K., Rayner M., Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur. Heart J. 2016; 37(42): 3232–45. https://doi.org/10.1093/eurheartj/ehw334

6. Kontsevaya A.V., Mukaneeva D.K., Ignatieva V.I., Antsiferova A.A., Drapkina O.M. Economics of cardiovascular prevention in the Russian Federation. Rossiiskii kardiologicheskii zhurnal. 2023; 28(9): 5521. https://doi.org/10.15829/1560-4071-2023-5521 https://elibrary.ru/knlbzo (in Russian)

7. Balanova Yu.A., Shalnova S.A., Kutsenko V.A., Imaeva A.E., Kapustina A.V., Muromtseva G.A. Contribution of hypertension and other risk factors to survival and mortality in the Russian population. Kardiovaskulyarnaya terapiya i profilaktika. 2021; 20(5): 164–74. https://doi.org/10.15829/1728-8800-2021-3003 https://elibrary.ru/xbqbic (in Russian)

8. Mills K.T., Bundy J.D., Kelly T.N., Reed J.E., Kearney P.M., Reynolds K., et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016; 134(6): 441–50. https://doi.org/10.1161/CIRCULATIONAHA.115.018912

9. Zhou B., Perel P., Mensah G.A., Ezzati M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 2021; 18(11): 785–802. https://doi.org/10.1038/s41569-021-00559-8

10. Franklin S.S., Lopez V.A., Wong N.D., Mitchell G.F., Larson M.G., Vasan R.S., et al. Single versus combined blood pressure components and risk for cardiovascular disease: the Framingham Heart Study. Circulation. 2009; 119(2): 243–50. https://doi.org/10.1161/CIRCULATIONAHA.108.797936

11. Williams B., Mancia G., Spiering W., Rosei A., Azizi M., Burnier M., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018; 36(10): 1953–2041. https://doi.org/10.1097/HJH.0000000000001940

12. Chazova I.E., Zhernakova Yu.V. Diagnosis and treatment of arterial hypertension [Guidelines]. Sistemnye gipertenzii. 2019; 16(1): 6–31. https://doi.org/10.26442/2075082X.2019.1.190179 (in Russian)

13. Balanova Yu.A., Shalnova S.A., Imaeva A.E., Kapustina А.V., Muromtseva G.A., Evstifeeva S.V., et al. Prevalence, awareness, treatment and control of hypertension in Russian Federation (data of observational ESSERF-2 study). Ratsional’naya farmakoterapiya v kardiologii. 2019; 15(4): 450–66. https://doi.org/10.20996/1819-6446-2019-15-4-450-466 https://elibrary.ru/zrwesv (in Russian)

14. Dolgalev I.V., Ivanova A.Yu., Shipkhineeva A.Yu. Hypertension as a death risk factor in men and women aged 20–59 years: a 34-year cohort prospective study. Kardiovaskulyarnaya terapiya i profilaktika. 2023; 22(8): 6–14. https://doi.org/10.15829/1728-8800-2023-3602 https://elibrary.ru/dnfnsw (in Russian)

15. Boytsov S.A., Drapkina O.M., Shlyakhto E.V., Konradi A.O., Balanova Yu.A., Zhernakova Yu.V., et al. Epidemiology of Cardiovascular Diseases and their Risk Factors in Regions of Russian Federation (ESSE-RF) study. Ten years later. Kardiovaskulyarnaya terapiya i profilaktika. 2021; 20(5): 143–52. https://doi.org/10.15829/1728-8800-2021-3007 (in Russian)

16. Das U.N. Potential role of TRPM8 in cold-induced hypertension and its clinical implications. Discov. Med. 2023; 35(177): 451–7. https://doi.org/10.24976/Discov.Med.202335177.46

17. Hasnulin V.I., Voevoda M.I., Hasnulin P.V., Artamonova O.G. Modern approach to arterial hypertension in the circumpolar and arctic regions. Literature review. Ekologiya cheloveka. 2016; (3): 43–51. https://doi.org/10.33396/1728-0869-2016-3-43-51 https://elibrary.ru/vqgtqv (in Russian)

18. Bauer F., Lindtke J., Seibert F., Rohn B., Doevelaar A., Babel N., et al. Impact of weather changes on hospital admissions for hypertension. Sci. Rep. 2022; 12(1): 5716. https://doi.org/10.1038/s41598-022-09644-5

19. Liu J., Varghese B.M., Hansen A., Zhang Y., Driscoll T., Morgan G., et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health. 2022; 6(6): e484–95. https://doi.org/10.1016/S2542-5196(22)00117-6

20. Charach G., Friedman I., Nochomovich H., Rogowski O., Charach L., Steinvil R. et al. Whether atmospheric pressure changes predict variations in blood pressure. J. Cardiol. Curr. Res. 2017; 9(4): 1–6. https://doi.org/10.15406/jccr.2017.09.00330

21. Kamiński M., Cieślik-Guerra U.I., Kotas R., Mazur P., Marańda W., Piotrowicz M., et al. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension. Int. J. Occup. Med. Environ. Health. 2016; 29(5): 783–92. https://doi.org/10.13075/ijomeh.1896.00546

22. Charach L., Grosskopf I., Karniel E., Charach G. A meteorological paradox: low atmospheric pressure-associated decrease in blood pressure is accompanied by more cardiac and cerebrovascular complications: five-year follow-up of elderly hypertensive patients. Atmosphere. 2022; 13(2): 235. https://doi.org/10.3390/atmos13020235

23. Aleksandrova O.V., Afanaseva A.D., Ragino Yu.I. The influence of natural and climatic factors on people living under different climatic conditions. Sibirskii nauchnyi meditsinskii zhurnal. 2025; 45(2): 6–18. https://doi.org/10.18699/SSMJ20250201 (in Russian)

24. Tolstov P.V., Kalyagin A.N., Tatarinova M.B. Influence of heliogeophysical and climatic factors on the cardiovascular system: a literature review. Kardiovaskulyanaya terapiya i profilaktika. 2023; 22(8): 3599. https://doi.org/10.15829/1728-8800-2023-3599 https://elibrary.ru/ttolaw (in Russian)

25. Savioli G., Ceresa I.F., Gori G., Fumoso F., Gri N., Floris V., et al. Pathophysiology and therapy of high-altitude sickness: practical approach in emergency and critical care. J. Clin. Med. 2022; 11(14): 3937. https://doi.org/10.3390/jcm11143937

26. Hasnulin V.I., Gafarov V.V., Voevoda M.I., Razumov E.V., Artamonova M.V. Influence of meteorological factors in different seasons on incidence of hypertensive disease complications in Novosibirsk residents. Ekologiya cheloveka. 2015; (7): 3–8. https://elibrary.ru/ugcjxt (in Russian)

27. Shur P.Z., Khasanova A.A., Tsinker M.Yu., Zaitseva N.V. Methodical approaches to assessing public health risks under combined exposure to climatic factors and chemical air pollution caused by them. Zdorov’e naseleniya i sreda obitaniya – ZNiSO. 2024; 32(8): 7–17. https://doi.org/10.21668/health.risk/2023.2.05 https://elibrary.ru/ebqchy (in Russian)

28. Halliwill J.R., Minson C.T. Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. J. Appl. Physiol. (1985). 2002; 93(3): 857–64. https://doi.org/10.1152/japplphysiol.01103.2001

29. Golubova T.F., Abazova S.V., Voznyak N.Yu., Pisanaya L.A. Partial oxygen density. Search for a calculation formula and database formation. Vestnik fizioterapii i kurortologii. 2024; 30(1): 74–5. (in Russian)

30. Kohlbrenner D., Marillier M., Randy H., Ghaith A., Furian M., Vergès S. Characterisation of the acute hypoxic response using breathing variability parameters: A pilot study in humans. Respir. Physiol. Neurobiol. 2023; 315: 104096. https://doi.org/10.1016/j.resp.2023.104096

31. Hohenauer E., Freitag L., Herten M., Siallagan J., Pollock E., Taube W., et al. The methodological quality of studies investigating the acute effects of exercise during hypoxia over the past 40 years: a systematic review. Front. Physiol. 2022; 13: 919359. https://doi.org/10.3389/fphys.2022.919359

32. Petrov V.N. Features of influence of oxygen’ partial density gradient in the air on the health status of populations living in the arctic zone of the Russian Federation. Vestnik Kol’skogo nauchnogo tsentra RAN. 2015; (3): 82–92. https://elibrary.ru/vbaynz (in Russian)

33. Prabhakar N.R., Peng Y.J., Kumar G.K., Nanduri J. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr. Physiol. 2015; 5(2): 561–77. https://doi.org/10.1002/cphy.c140039

34. Iturriaga R., Rio D.R., Idiaquez J., Somers V.K. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease. Biol. Res. 2016; 49: 13. https://doi.org/10.1186/s40659-016-0073-8

35. Pope C.A. 3rd, Dockery D.W., Kanner R.E., Villegas G.M., Schwartz J. Oxygen saturation, pulse rate, and particulate air pollution: A daily time-series panel study. Am. J. Respir. Crit. Care Med. 1999; 159(2): 365–72. https://doi.org/10.1164/ajrccm.159.2.9702103

36. Goldberg M.S., Giannetti N., Burnett R.T., Mayo N.E., Valois M.F., Brophy J.M. A panel study in congestive heart failure to estimate the short-term effects from personal factors and environmental conditions on oxygen saturation and pulse rate. Occup. Environ. Med. 2008; 65(10): 659–66. https://doi.org/10.1136/oem.2007.034934

37. Trembach N.V., Trembach I.A., Veiler R.V., Musaeva T.S., Fedunets D.E., Dryaev S.A., et al. Comparative analysis of methods for assessing the sensitivity of the peripheral chemoreflex. Sovremennye problemy nauki i obrazovaniya. 2024; (1): 69. https://doi.org/10.17513/spno.33186 https://elibrary.ru/xherld (in Russian)

38. Rus A.A., Mornoş C. The impact of meteorological factors and air pollutants on acute coronary syndrome. Curr. Cardiol. Rep. 2022; 24(10): 1337–49. https://doi.org/10.1007/s11886-022-01759-5

39. Kulikov V.P., Kuznetsova D.V., Zarya A.N. Role of cerebrovascular and cardiovascular CO2-reactivity in arterial hypertension. Arterial’naya gipertenziya. 2017; 23(5): 433–46. https://doi.org/10.18705/1607-419X-2017-23-5-433-446 https://elibrary.ru/xmyfxv (in Russian)

40. Kuzmenko N.V., Rubanova N.S., Pliss M.G., Tsyrlin V.A. Adaptability of the cardiovascular system in normotensive rats of various ages at fluctuations of air temperature and atmospheric pressure. Aviakosmicheskaya i ekologicheskaya meditsina. 2022; 56(3): 25–32. https://doi.org/10.21687/0233-528X-2022-56-3-25-32 https://elibrary.ru/lqhlon (in Russian)

41. Akhadov Sh.V., Ruzbanova G.R., Molchanova G.S., Talalaeva T.G., Khoreva S.N. Arterial hypertension progression and changing activity of renin-angiotensin-aldosterone and sympatho-adrenal systems. Kardiovaskulyarnaya terapiya i profilaktika. 2010; 9(2): 10–5. https://elibrary.ru/kzywsf (in Russian)

42. Joles J.A., Koomans H.A. Causes and consequences of increased sympathetic activity in renal disease. Hypertension. 2004; 43(4): 699–706. https://doi.org/10.1161/01.HYP.0000121881.77212.b1

43. Rump L.C., Amann K., Orth S., Ritz E. Sympathetic overactivity in renal disease: a window to understand progression and cardiovascular complications of uremia. Nephrol. Dial. Transplant. 2000; 15(11): 1735–48. https://doi.org/10.1093/ndt/15.11.1735

44. Akhadov Sh.V., Ruzbanova G.R., Akhadova A.Sh. Systematization of hypertensive patients based on pathogenetic mechanisms – a way to optimize antihypertensive therapy. Arterial’naya gipertenziya. 2010; 16(2): 191–201. https://elibrary.ru/mhvdxd (in Russian)

45. Melnikov V.N., Polyakov V.Ya., Krivoshchekov S.G., Baranov V.I., Rechkina S.Yu. Structural-functional characteristics of cervical vessels in hypertensive patients under changed atmospheric pressure. Aviakosmicheskaya i ekologicheskaya meditsina. 2014; 48(3): 51–5. https://elibrary.ru/sigtfx (in Russian)

46. Ma P., Wang S., Chen L., Zang X., Fan X., Zhou N., et al. Independent influences of extreme atmospheric pressure on hypertension-related ER visits. Air Qual. Atmos. Health. 2020; 13: 1065–74. https://doi.org/10.1007/s11869-020-00859-x

47. Donegani E. Effects of high altitude: physiological adaptations of the heart and lungs. J. Cardiol. Curr. Res. 2014; 1(9): 175–6. https://doi.org/10.15406/jccr.2014.01.00035

48. Chi F.I., Liang Q., Wang Z.M. Effects of hyperbaric therapy on function and morphology of guinea pig cochlea with endolymphatic hydrops. Otol. Neurotol. 2004; 25(4): 553–8. https://doi.org/10.1097/00129492-200407000-00025

49. Sato J., Itano Y., Funakubo M., Mizoguchi H., Itoh M., Mori R. Low barometric pressure aggravates neuropathic pain in guinea pigs. Neurosci. Lett. 2011; 503(3): 152–6. https://doi.org/10.1016/j.neulet.2011.08.030

50. Thijssen D.H.J., Scholten R.R., Van den Munckhof I.C.L., Benda N., Green D.J., Hopman M.T.E. Acute change in vascular tone alters intima-media thickness. Hypertension. 2011; 58(2): 240–6. https://doi.org/10.1161/hypertensionaha.111.173583

51. Ikeyama K., Nakatani M., Kumamoto J., Denda M. Distinct intracellular calcium responses of individual cultured human keratinocytes to air pressure changes. Skin Res. Technol. 2013; 19(3): 346–51. https://doi.org/10.1111/srt.12045

52. Denda M. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change. Extrem. Physiol. Med. 2016; 5: 11. https://doi.org/10.1186/s13728-016-0052-2

53. Denda M., Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp. Dermatol. 2022; 31(4): 459–74. https://doi.org/10.1111/exd.14494

54. Kuzmenko N.V., Rubanova N.S., Pliss M.G., Tsyrlin V.A. Functioning of cardiovascular system of laboratory rats under conditions of seasonal fluctuations in atmospheric pressure and geomagnetic activity. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova. 2018; 104(4): 477–92. https://elibrary.ru/yxcrfr (in Russian)

55. Drapkina O.M., Zyryanov S.K., Shepel R.N., Orlov D.O., Rogozhkina E.A., Egorov P.V., et al. Meteoropathy: myth or reality? Assessment of the relationship between cardiovascular diseases and weather conditions according to data from a Moscow hospital. Kardiovaskulyarnaya terapiya i profilaktika. 2024; 23(5): 45–54. https://doi.org/10.15829/1728-8800-2024-4002 (in Russian)


Review

For citations:


Khasanova A.A., Shur P.Z., Ustinova O.Yu., Zaitseva N.V. Influence of atmospheric pressure on formation of arterial hypertension: pathogenetic mechanisms and indicators (literature review). Hygiene and Sanitation. 2025;104(12):1656-1662. (In Russ.) https://doi.org/10.47470/0016-9900-2025-104-12-1656-1662. EDN: ulkcyp

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0016-9900 (Print)
ISSN 2412-0650 (Online)